Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 299(4): 103033, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806680

RESUMEN

N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Plesiomonas , Humanos , Acetilglucosamina/metabolismo , Glucosamina , Metales , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Quinasas Asociadas a rho , Plesiomonas/enzimología
2.
J Biol Chem ; 298(5): 101903, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398092

RESUMEN

The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Carbohidrato Epimerasas , Coxiella burnetii/enzimología , Streptomyces griseus/enzimología , Carbohidrato Epimerasas/genética , Azúcares de Nucleósido Difosfato/biosíntesis , Nucleótidos de Timina/biosíntesis
3.
Biochem J ; 479(9): 973-993, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35551602

RESUMEN

Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.


Asunto(s)
Codón sin Sentido , Degradación de ARNm Mediada por Codón sin Sentido , Regiones no Traducidas 3' , Animales , Codón sin Sentido/genética , Regulación de la Expresión Génica , Mamíferos/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/metabolismo
4.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35245364

RESUMEN

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Recombinantes
5.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35066640

RESUMEN

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Asunto(s)
Resistencia a la Insulina , Proteínas Tirosina Fosfatasas , Receptor de Insulina , , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Insulina/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Té/química
6.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807552

RESUMEN

TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and ß-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Agregado de Proteínas , Conformación Proteica en Lámina beta , Dominios Proteicos , Pliegue de Proteína
7.
FASEB J ; 33(10): 10780-10793, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287959

RESUMEN

The involvement of transactivation response (TAR) DNA-binding protein 43 (TDP-43) in neurodegenerative diseases was revealed in 2006, when it was first reported to be the main component of the intracellular inclusions in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. After 12 yr it is not yet possible to purify to a reasonable yield and in a reproducible manner a stable full-length protein, which has limited so far the characterization of its structure, function, molecular interactors, and pathobiology. Using a novel protocol we have achieved the purification of the full-length TDP-43, with both a short pectate lyase B tag and a glutathione S-transferase tag, which consisted in its expression in bacteria, solubilization from inclusion bodies, purification under denaturing conditions, refolding, and a final size exclusion chromatography (SEC) step. Differential scanning fluorimetry was used to find the best buffers and combination of additives to increase both its solubility and its stability. The protein is pure, as determined with electrophoresis, Western blotting, and mass spectrometry; properly refolded, as revealed by circular dichroism and fluorescence spectroscopies; functional, because it binds to DNA and protein partners; and stable to degradation and aggregation in a physiologic solution. Analyses with dynamic light scattering and SEC revealed that the protein is a dimer.-Vivoli Vega, M., Nigro, A., Luti, S., Capitini, C., Fani, G., Gonnelli, L., Boscaro, F., Chiti, F. Isolation and characterization of soluble human full-length TDP-43 associated with neurodegeneration.


Asunto(s)
Proteínas de Unión al ADN/aislamiento & purificación , Enfermedades Neurodegenerativas/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cromatografía en Gel , Dicroismo Circular , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dispersión Dinámica de Luz , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Espectrometría de Masas , Enfermedades Neurodegenerativas/genética , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Solubilidad
8.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872449

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.


Asunto(s)
Proteínas de Unión al ADN/química , Mutación , Dicroismo Circular , Proteínas de Unión al ADN/genética , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína
9.
SLAS Discov ; 28(5): 211-222, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001588

RESUMEN

The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.


Asunto(s)
Proteínas Bacterianas , Burkholderia pseudomallei , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Colorantes Fluorescentes/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Macrófagos/metabolismo
10.
Amyloid ; 28(1): 56-65, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33026249

RESUMEN

Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Amiloide/genética , Amiloide/ultraestructura , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/ultraestructura , Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Encéfalo/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/genética , Demencia Frontotemporal/patología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/ultraestructura , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Conformación Proteica , Dominios Proteicos/genética , Estructura Secundaria de Proteína
11.
ACS Chem Biol ; 14(7): 1593-1600, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31074957

RESUMEN

The self-assembly of proteins into structured fibrillar aggregates is associated with a range of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, in which an important cytotoxic role is thought to be played by small soluble oligomers accumulating during the aggregation process or released by mature fibrils. As the structural characteristics of such species and their links with toxicity are still not fully defined, we have compared six examples of preformed misfolded protein oligomers with different ß-sheet content, as determined using Fourier transform infrared spectroscopy, and with different toxicity, as determined by three cellular readouts of cell viability. The results show the absence of any measurable correlation between the nature of their secondary structure and their cellular toxicity, both when comparing the six types of oligomers as a group and when comparing species in subgroups characterized by either the same size or the same exposure of hydrophobic moieties.


Asunto(s)
Péptidos beta-Amiloides/química , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/patología , alfa-Sinucleína/química , Enfermedad de Alzheimer/patología , Transferasas de Carboxilo y Carbamoilo/química , Línea Celular , Supervivencia Celular , Escherichia coli/química , Proteínas de Escherichia coli/química , Humanos , Enfermedad de Parkinson/patología , Pliegue de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA