Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087538

RESUMEN

Vapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are performed to compute the VLE of H2 and aqueous electrolyte solutions at 298-423 K, 10-400 bar, 0-8 mol KOH/kg water, and 0-6 mol NaCl/kg water. The densities and activities of water in aqueous KOH and NaCl solutions are accurately modeled (within 2% deviation from experiments) using the non-polarizable Madrid-2019 Na+/Cl- ion force fields for NaCl and the Madrid-Transport K+ and Delft Force Field of OH- for KOH, combined with the TIP4P/2005 water force field. A free energy correction (independent of pressure, salt type, and salt molality) is applied to the computed infinite dilution excess chemical potentials of H2 and water, resulting in accurate predictions (within 5% of experiments) for the solubilities of H2 in water and the saturated vapor pressures of water for a temperature range of 298-363 K. The compositions of water and H2 are computed using an iterative scheme from the liquid phase excess chemical potentials and densities, in which the gas phase fugacities are computed using the GERG-2008 equation of state. For the first time, the VLE of H2 and aqueous KOH/NaCl systems are accurately captured with respect to experiments (i.e., for both the liquid and gas phase compositions) without compromising the liquid phase properties or performing any refitting of force fields.

2.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748005

RESUMEN

Molecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense liquids such arguments are known to work well, at low density they are typically less appropriate due to an incomplete description of the effect of chain connectivity on the local environment of the chains' monomer segments. To address this issue, we develop three semi-empirical approaches that significantly improve the thermodynamic description of chain molecules at low density. The approaches are developed for chain molecules with repulsive intermolecular forces; therefore, they could be used as reference models for developing equations of the state of real fluids based on perturbation theory. All three approaches are extensions of Wertheim's first-order thermodynamic perturbation theory (TPT1) for polymerization. The first model, referred to as TPT1-v, incorporates a second-virial correction that is scaled to zero at liquid-like densities. The second model, referred to as TPT1-y, introduces a Helmholtz-energy contribution to account for correlations between next-nearest-neighbor segments within chain molecules. The third approach, called TPT-E, directly modifies TPT1 without utilizing an additional Helmholtz energy contribution. By employing TPT1 at the core of these approaches, we ensure an accurate description of mixtures and enable a seamless extension from chains of tangentially bonded hard-sphere segments of equal size to hetero-segmented chains, fused chains, and chains of soft repulsive segments (which are influenced by temperature). The low-density corrections implemented in TPT1 are designed to preserve these good characteristics, as confirmed through comparisons with novel molecular simulation results for the pressure of various chain fluids. TPT1-v exhibits excellent transferability across different chain types, but it relies on knowing the second virial coefficient of the chain molecules, which is non-trivial to obtain and determined here using Monte Carlo simulation. The TPT1-y model, on the other hand, achieves comparable accuracy to TPT1-v while being fully predictive, requiring no input besides the geometry of the chain molecules.

3.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38832744

RESUMEN

We study important aspects of shape selectivity effects of zeolites for hydroisomerization of linear alkanes, which produces a myriad of isomers, particularly for long chain hydrocarbons. To investigate the conditions for achieving an optimal yield of branched hydrocarbons, it is important to understand the role of chemical equilibrium in these reversible reactions. We conduct an extensive analysis of shape selectivity effects of different zeolites for the hydroisomerization of C7 and C8 isomers at chemical reaction equilibrium conditions. The reaction ensemble Monte Carlo method, coupled with grand-canonical Monte Carlo simulations, is commonly used for computing reaction equilibrium of heterogeneous reactions. The computational demands become prohibitive for a large number of reactions. We used a faster alternative in which reaction equilibrium is obtained by imposing chemical equilibrium in the gas phase and phase equilibrium between the gas phase components and the adsorbed phase counterparts. This effectively mimics the chemical equilibrium distribution in the adsorbed phase. Using Henry's law at infinite dilution and mixture adsorption isotherm models at elevated pressures, we calculate the adsorbed loadings in the zeolites. This study shows that zeolites with cage or channel-like structures exhibit significant differences in selectivity for alkane isomers. We also observe a minimal impact of pressure on the gas-phase equilibrium of these reactions at typical experimental reaction temperatures 400-700K. This study marks initial strides in understanding the reaction product distribution for long-chain alkanes.

4.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38639314

RESUMEN

Focused ultrasound has experimentally been found to enhance the diffusion of nanoparticles; our aim with this work is to study this effect closer using both experiments and non-equilibrium molecular dynamics. Measurements from single particle tracking of 40 nm polystyrene nanoparticles in an agarose hydrogel with and without focused ultrasound are presented and compared with a previous experimental study using 100 nm polystyrene nanoparticles. In both cases, we observed an increase in the mean square displacement during focused ultrasound treatment. We developed a coarse-grained non-equilibrium molecular dynamics model with an implicit solvent to investigate the increase in the mean square displacement and its frequency and amplitude dependencies. This model consists of polymer fibers and two sizes of nanoparticles, and the effect of the focused ultrasound was modeled as an external oscillating force field. A comparison between the simulation and experimental results shows similar mean square displacement trends, suggesting that the particle velocity is a significant contributor to the observed ultrasound-enhanced mean square displacement. The resulting diffusion coefficients from the model are compared to the diffusion equation for a two-time continuous time random walk. The model is found to have the same frequency dependency. At lower particle velocity amplitude values, the model has a quadratic relation with the particle velocity amplitude as described by the two-time continuous time random walk derived diffusion equation, but at higher amplitudes, the model deviates, and its diffusion coefficient reaches the non-hindered diffusion coefficient. This observation suggests that at higher ultrasound intensities in hydrogels, the non-hindered diffusion coefficient can be used.

5.
Soft Matter ; 19(33): 6355-6367, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37577849

RESUMEN

It has been reported that lipid droplets (LDs), called oleosomes, have an inherent ability to inflate or shrink when absorbing or fueling lipids in the cells, showing that their phospholipid/protein membrane is dilatable. This property is not that common for membranes stabilizing oil droplets and when well understood, it could be exploited for the design of responsive and metastable droplets. To investigate the nature of the dilatable properties of the oleosomes, we extracted them from rapeseeds to obtain an oil-in-water emulsion. Initially, we added an excess of rapeseed oil in the dispersion and applied high-pressure homogenization, resulting in a stable oil-in-water emulsion, showing the ability of the molecules on the oleosome membrane to rearrange and reach a new equilibrium when more surface was available. To confirm the rearrangement of the phospholipids on the droplet surface, we used molecular dynamics simulations and showed that the fatty acids of the phospholipids are solubilized in the oil core and are homogeneously spread on the liquid-like membrane, avoiding clustering with neighbouring phospholipids. The weak lateral interactions on the oleosome membrane were also confirmed experimentally, using interfacial rheology. Finally, to investigate whether the weak lateral interactions on the oleosome membrane can be used to have a triggered change of conformation by an external force, we placed the oleosomes on a solid hydrophobic surface and found that they destabilise, allowing the oil to leak out, probably due to a reorganisation of the membrane phospholipids after their interaction with the hydrophobic surface. The weak lateral interactions on the LD membrane and their triggered destabilisation present a unique property that can be used for a targeted release in foods, pharmaceuticals and cosmetics.


Asunto(s)
Gotas Lipídicas , Fosfolípidos , Gotas Lipídicas/química , Emulsiones/química , Fosfolípidos/química , Conformación Molecular , Agua/química
6.
J Chem Eng Data ; 68(2): 349-357, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36812039

RESUMEN

Vapor-liquid equilibrium (VLE) data for the binary systems tetrahydrofuran (THF) + acetic acid (AA) and THF + trichloroethylene (TCE) were measured under isobaric conditions using an ebulliometer. The boiling temperatures for the systems (THF + AA/THF + TCE) are reported for 13/15 compositions and five/six different pressures ranging from 50.2/60.0 to 101.1/101.3 kPa, respectively. The THF + AA system shows simple phase behavior with no azeotrope formation. The THF + TCE system does not exhibit azeotrope formation but seems to have a pinch point close to the pure end of TCE. The nonrandom two-liquid (NRTL) and universal quasichemical (UNIQUAC) activity coefficient models were used to accurately fit the binary (PTx) data. Both models were able to fit the binary VLE data satisfactorily. However, the NRTL model was found to be slightly better than UNIQUAC model in fitting the VLE data for both systems. The results can be used for designing liquid-liquid extraction and distillation processes involving mixtures of THF, AA, and TCE.

7.
Chemistry ; 28(29): e202200030, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35312101

RESUMEN

In this work, adsorption properties of the UiO-66 metal-organic framework were investigated, with particular emphasis on the influence of structural defects. A series of UiO-66 samples were synthesized and characterized using a wide range of experimental techniques. Type I adsorption isotherms for low-temperature adsorption of N2 and Ar showed that micropore volume and specific surface area significantly increase with the number of defects. Adsorption of hexane isomers in UiO-66 was studied by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) experimental and Monte Carlo simulation techniques. QE-TPDA profiles revealed that only defect-free UiO-66 exhibits distinct two adsorption states. This technique also yielded high-quality adsorption isobars that were successfully recreated using Grand-Canonical Monte Carlo molecular simulations, which, however, required refinement of the existing force fields. The calculations demonstrated the detailed mechanism of adsorption and separation of hexane isomers in the UiO-66 structure. The preferred tetrahedral cages provide suitable voids for bulky molecules, which is the reason for unusual "reverse" selectivity of UiO-66 towards di-branched alkanes. Interconnection of the tetrahedral cavities due to missing organic linkers greatly reduces the selectivity of the defected material.

8.
J Chem Inf Model ; 61(8): 3752-3757, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34383501

RESUMEN

We present several new major features added to the Monte Carlo (MC) simulation code Brick-CFCMC for phase- and reaction equilibria calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one is thermodynamic integration for the computation of excess chemical potentials (µex). For this purpose, we implemented the computation of the ensemble average of the derivative of the potential energy with respect to the scaling factor for intermolecular interactions (⟨∂U∂λ⟩). Efficient bookkeeping is implemented so that the quantity ∂U∂λ is updated after every MC trial move with negligible computational cost. We demonstrate the accuracy and reliability of the calculation of µex for sodium chloride in water. Second, we implemented hybrid MC/MD translation and rotation trial moves to increase the efficiency of sampling of the configuration space. In these trial moves, short Molecular Dynamics (MD) trajectories are performed to collectively displace or rotate all molecules in the system. These trajectories are accepted or rejected based on the total energy drift. The efficiency of these trial moves can be tuned by changing the time step and the trajectory length. The new trial moves are demonstrated using MC simulations of a viscous fluid (deep eutectic solvent).


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Método de Montecarlo , Reproducibilidad de los Resultados , Termodinámica
9.
J Chem Phys ; 154(18): 184502, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241035

RESUMEN

Deep eutectic solvents (DESs) have emerged as a cheaper and greener alternative to conventional organic solvents. Choline chloride (ChCl) mixed with urea at a molar ratio of 1:2 is one of the most common DESs for a wide range of applications such as electrochemistry, material science, and biochemistry. In this study, molecular dynamics simulations are performed to study the effect of urea content on the thermodynamic and transport properties of ChCl and urea mixtures. With increased mole fraction of urea, the number of hydrogen bonds (HBs) between cation-anion and ion-urea decreases, while the number of HBs between urea-urea increases. Radial distribution functions (RDFs) for ChCl-urea and ChCl-ChCl pairs shows a significant decrease as the mole fraction of urea increases. Using the computed RDFs, Kirkwood-Buff Integrals (KBIs) are computed. KBIs show that interactions of urea-urea become stronger, while interactions of urea-ChCl and ChCl-ChCl pairs become slightly weaker with increasing mole fraction of urea. All thermodynamic factors are found larger than one, indicating a non-ideal mixture. Our results also show that self- and collective diffusivities increase, while viscosities decrease with increasing urea content. This is mainly due to the weaker interactions between ions and urea, resulting in enhanced mobilities. Ionic conductivities exhibit a non-monotonic behavior. Up to a mole fraction of 0.5, the ionic conductivities increase with increasing urea content and then reach a plateau.

10.
J Chem Phys ; 154(14): 144502, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858163

RESUMEN

With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 1:2, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components: HBD > anion > cation. Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.

11.
J Chem Phys ; 155(11): 114504, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551525

RESUMEN

Despite the widespread acknowledgment that deep eutectic solvents (DESs) have negligible vapor pressures, very few studies in which the vapor pressures of these solvents are measured or computed are available. Similarly, the vapor phase composition is known for only a few DESs. In this study, for the first time, the vapor pressures and vapor phase compositions of choline chloride urea (ChClU) and choline chloride ethylene glycol (ChClEg) DESs are computed using Monte Carlo simulations. The partial pressures of the DES components were obtained from liquid and vapor phase excess Gibbs energies, computed using thermodynamic integration. The enthalpies of vaporization were computed from the obtained vapor pressures, and the results were in reasonable agreement with the few available experimental data in the literature. It was found that the vapor phases of both DESs were dominated by the most volatile component (hydrogen bond donor, HBD, i.e., urea or ethylene glycol), i.e., 100% HBD in ChClEg and 88%-93% HBD in ChClU. Higher vapor pressures were observed for ChClEg compared to ChClU due to the higher volatility of ethylene glycol compared to urea. The influence of the liquid composition of the DESs on the computed properties was studied by considering different mole fractions (i.e., 0.6, 0.67, and 0.75) of the HBD. Except for the partial pressure of ethylene glycol in ChClEg, all the computed partial pressures and enthalpies of vaporization showed insensitivity toward the liquid composition. The activity coefficient of ethylene glycol in ChClEg was computed at different liquid phase mole fractions, showing negative deviations from Raoult's law.

12.
J Chem Eng Data ; 66(1): 524-534, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33487733

RESUMEN

Knowledge on the solubility of gases, especially carbon dioxide (CO2), in monoethylene glycol (MEG) is relevant for a number of industrial applications such as separation processes and gas hydrate prevention. In this study, the solubility of CO2 in MEG was measured experimentally at temperatures of 333.15, 353.15, and 373.15 K. Experimental data were used to validate Monte Carlo (MC) simulations. Continuous fractional component MC simulations in the osmotic ensemble were performed to compute the solubility of CO2 in MEG at the same temperatures and at pressures up to 10 bar. MC simulations were also used to study the solubility of methane (CH4), hydrogen sulfide (H2S), and nitrogen (N2) in MEG at 373.15 K. Solubilities from experiments and simulations are in good agreement at low pressures, but deviations were observed at high pressures. Henry coefficients were also computed using MC simulations and compared to experimental values. The order of solubilities of the gases in MEG at 373.15 K was computed as H2S > CO2 > CH4 > N2. Force field modifications may be required to improve the prediction of solubilities of gases in MEG at high pressures and low temperatures.

13.
J Chem Eng Data ; 66(5): 2071-2087, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34054140

RESUMEN

Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction of water in saturated hydrogen-water mixtures in the gas phase ranges from 0.004 to 0.138. The same properties were calculated for pure hydrogen at 323.15 K and pressures between 100 and 1000 bar. Simulations were performed using the TIP3P and a modified TIP4P force field for water and the Marx, Vrabec, Cracknell, Buch, and Hirschfelder force fields for hydrogen. The vapor-liquid equilibria of hydrogen-water mixtures were calculated along the melting line of ice Ih, corresponding to temperatures between 264.21 and 272.4 K, using the TIP3P force field for water and the Marx force field for hydrogen. In this temperature range, the solubilities and the chemical potentials of hydrogen and water were obtained. Based on the computed solubility data of hydrogen in water, the freezing-point depression of water was computed ranging from 264.21 to 272.4 K. The modified TIP4P and Marx force fields were used to improve the solubility calculations of hydrogen-water mixtures reported in our previous study [Rahbari A.;J. Chem. Eng. Data2019, 64, 4103-4115] for temperatures between 323 and 423 K and pressures ranging from 100 to 1000 bar. The chemical potentials of ice Ih were calculated as a function of pressure between 100 and 1000 bar, along the melting line for temperatures between 264.21 and 272.4 K, using the IAPWS equation of state for ice Ih. We show that at low pressures, the presence of water has a large effect on the thermodynamic properties of compressed hydrogen. Our conclusions may have consequences for the energetics of a hydrogen refueling station using electrochemical hydrogen compressors.

14.
Fluid Phase Equilib ; 528: 112842, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33024350

RESUMEN

Cyclodextrins (CDs) are widely used in drug delivery, catalysis, food and separation processes. In this work, a comprehensive simulation study on the diffusion of the native α-, ß- and γ-CDs in aqueous solutions is carried out using Molecular Dynamics simulations. The effect of the system size on the computed self-diffusivity is investigated and it is found that the required correction can be as much as 75% of the final value. The effect of the water force field is examined and it is shown that the q4md-CD/TIP4P/2005 force field combination predicts the experimentally measured self-diffusion coefficients of CDs very accurately. The self-diffusion coefficients of the three native CDs were also computed in aqueous-NaCl solutions using the Joung and Cheatham (JC) and the Madrid-2019 force fields. It is found that Na + ions have higher affinity towards the CDs when the JC force field is used and for this reason the predicted diffusivity of CDs is lower compared to simulations using the Madrid-2019 force field. As a model system for drug delivery and waste-water treatment applications, the diffusion of the ß-CD:Ibuprofen inclusion complex in water is studied. In agreement with experiments for similar components, it is shown that the inclusion complex and the free ß-CD have almost equal self-diffusion coefficients. Our analysis revealed that this is most likely caused by the almost full inclusion of the ibuprofen in the cavity of the ß-CD. Our findings show that Molecular Dynamics simulation can be used to provide reasonable diffusivity predictions, and to obtain molecular-level understanding useful for industrial applications of CDs.

15.
J Chem Inf Model ; 60(6): 2678-2682, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32275829

RESUMEN

We present a new molecular simulation code, Brick-CFCMC, for performing Monte Carlo simulations using state-of-the-art simulation techniques. The Continuous Fractional Component (CFC) method is implemented for simulations in the NVT/NPT ensembles, the Gibbs Ensemble, the Grand-Canonical Ensemble, and the Reaction Ensemble. Molecule transfers are facilitated by the use of fractional molecules which significantly improve the efficiency of the simulations. With the CFC method, one can obtain phase equilibria and properties such as chemical potentials and partial molar enthalpies/volumes directly from a single simulation. It is possible to combine trial moves from different ensembles. This enables simulations of phase equilibria in a system where also a chemical reaction takes place. We demonstrate the applicability of our software by investigating the esterification of methanol with acetic acid in a two-phase system.


Asunto(s)
Metanol , Programas Informáticos , Simulación por Computador , Método de Montecarlo , Termodinámica
16.
J Chem Inf Model ; 59(4): 1290-1294, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30742429

RESUMEN

We present a new plugin for LAMMPS for on-the-fly computation of transport properties (OCTP) in equilibrium molecular dynamics. OCTP computes the self- and Maxwell-Stefan diffusivities, bulk and shear viscosities, and thermal conductivities of pure fluids and mixtures in a single simulation. OCTP is the first implementation in LAMMPS that uses the Einstein relations combined with the order- n algorithm for the efficient sampling of dynamic variables. OCTP has low computational requirements and is easy to use because it follows the native input file format of LAMMPS. A tool for calculating the radial distribution function (RDF) of the fluid beyond the cutoff radius, while taking into account the system size effects, is also part of the new plugin. The RDFs computed from OCTP are needed to obtain the thermodynamic factor, which relates Maxwell-Stefan and Fick diffusivities. To demonstrate the efficiency of the new plugin, the transport properties of an equimolar mixture of water-methanol were computed at 298 K and 1 bar.


Asunto(s)
Algoritmos , Hidrodinámica , Simulación de Dinámica Molecular , Transporte Biológico , Difusión , Viscosidad
17.
Phys Chem Chem Phys ; 20(45): 28848-28859, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30420977

RESUMEN

The separation of light olefins from paraffins via cryogenic distillation is a very energy intensive process. Solid adsorbents and especially metal-organic frameworks with open metal sites have the potential to significantly lower the required energy. Specifically, M-MOF-74 has drawn considerable attention for application in olefin/paraffin separation. To investigate how the separation proceeds on a molecular level and to design better materials, molecular simulation can be a useful tool. Unfortunately, it is still a challenge to model the adsorption behavior of many adsorbates in metal-organic frameworks with open metal sites. Previously, the inclusion of explicit polarization has been suggested to improve the quality of classical force fields for such systems. Here, the potential of polarizable force fields for the description of olefins and paraffins in metal-organic frameworks with open metal sites is investigated. In particular, heats of adsorption, binding geometries, and adsorption isotherms are calculated for C2H4, C2H6, C3H6, and C3H8 in M-MOF-74 (with M = Co, Mn, Fe, and Ni). In this study, no force field parameters are adjusted to improve the model. The results show that including explicit polarization significantly improves the description of the adsorption in comparison to non-polarizable generic force fields which do not consider explicit polarization. The study also reveals that simulation predictions are sensitive to the assigned repulsive potential and framework charges. A fully re-parametrized polarizable force field may have the capability to improve the predictions even further.

18.
J Chem Eng Data ; 63(4): 1096-1102, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-30258248

RESUMEN

The applicability of the Wolf method for calculating electrostatic interactions is verified for simulating vapor-liquid equilibria of hydrogen sulfide, methanol, and carbon dioxide. Densities, chemical potentials, and critical properties are obtained with Monte Carlo simulations using the Continuous Fractional Component version of the Gibbs Ensemble. Saturated vapor pressures are obtained from NPT simulations. Excellent agreement is found between simulation results and data from literature (simulations using the Ewald summation). It is also shown how to choose the optimal parameters for the Wolf method. Even though the Wolf method requires a large simulation box in the gas phase, due to the lack of screening of electrostatics, one can consider the Wolf method as a suitable alternative to the Ewald summation in VLE calculations.

19.
Langmuir ; 32(48): 12664-12675, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934513

RESUMEN

In this modeling study, the uses of nitrogen (77.3 K), probe molecule of choice for decades, and argon, opted as alternative in the 2015 IUPAC report on adsorptive characterization, as probe molecules for geometric surface area determination are compared. Graphene sheets possessing slit-shaped pores with varying size (width) are chosen as model porous solids, and different methods for the determination of specific surface areas are investigated. The BET method, which is the most commonly applied analysis, is compared to the Langmuir and relatively recently proposed ESW (excess sorption work) method. We show that either using argon or nitrogen as adsorptive, the physical meaningfulness of adsorption-derived surface areas highly depends on the pore size. When less than two full layers of adsorbate molecules can be formed within slitlike pores of a graphitic material (Dpore < 5.8 Å for Ar/N2), adsorption-derived surface areas are about half that of the geometric surface area. Between two and four layers (6.8 < Dpore < 12.8 Å), adsorption surface areas can be significantly larger (up to 75%) than the geometric surface area because monolayer-multilayer formation and pore filling cannot be distinguished. For four or more layers of adsorbate molecules (Dpore > 12.8 Å), adsorption-derived surface areas are comparable to their geometrically accessible counterparts. Note that for the Langmuir method this only holds if pore-filling effects are excluded during determination. This occurs in activated carbon materials as well. In the literature, this indistinguishability issue has been largely overlooked, and erroneous claims of materials with extremely large surface areas have been made. Both the BET and Langmuir areas, for Dpore > 12.8 Å, correspond to geometric surface areas, whereas the ESW method yields significantly lower values. For the 6.8 Å < Dpore < 12.8 Å range, all methods erroneously overestimate the specific surface area. For the energetically homogeneous graphene sheets, differences between argon and nitrogen for the assessment of surface areas are minor.

20.
Langmuir ; 31(46): 12783-96, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26523608

RESUMEN

A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA