RESUMEN
RATIONALE: The certification of sulfur (S) in Standard Reference Materials™ by the National Institute of Standards and Technology (NIST) has been exclusively performed using isotope dilution thermal ionization mass spectrometry (ID-TIMS). The ID-TIMS measurement method is limited in its capability for low concentration measurements (<1 µg/g) due to the blank associated with the chemical reduction procedure (≈0.2 S µg). Newly developed materials and applications, such as biofuels made from soy and nanomedicine, pose a challenge to the ID-TIMS technique because of their very low concentrations (<<1 µg/g) of S. As described here, a measurement technique with low S blanks is essential for low-level S measurements. METHODS: An isotope dilution (ID) multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) method combined with an internal normalization approach for mass bias correction has been used to determine low-level S concentrations in synthetically prepared mixtures using a (33)S-enriched spike material. Dilute sulfur solutions (1 µg S/g) were prepared from NIST SRM 3154 (Sulfate Spectrometric Solution) to test the capability of this technique for measuring very low-level S concentrations. RESULTS: The concentration results for each solution were 0.983 ± 0.004 µg/g (95% CI, n = 2, k = 2), 1.006 ± 0.005 µg/g (95% CI, n = 2, k = 2), and 0.999 ± 0.003 µg/g (95% CI, n = 2, k = 2), in excellent agreement with the gravimetric determination, deviating less than 0.35% and suggesting the technique can yield unbiased and accurate results. The blanks averaged 13 ± 0.0017 ng S (1s). CONCLUSIONS: The data results provide a clear indication that the ID-MC-ICP-MS method for the determination of low-level S concentrations is feasible. The more than one order of magnitude reduction of the blanks suggests that it is a better alternative to the ID-TIMS method for very low S materials such as are encountered in biofuels and some biochemical species. Published 2012. This article is a US Government work and is in the public domain in the USA.
RESUMEN
The National Institute of Standards and Technology, the U.S. Food and Drug Administration, Center for Drug Evaluation and Research and Center for Food Safety and Applied Nutrition, and the National Institutes of Health, Office of Dietary Supplements, are collaborating to produce a series of Standard Reference Materials (SRMs) for dietary supplements. A suite of ephedra materials is the first in the series, and this paper describes the acquisition, preparation, and value assignment of these materials: SRMs 3240 Ephedra sinica Stapf Aerial Parts, 3241 E. sinica Stapf Native Extract, 3242 E. sinica Stapf Commercial Extract, 3243 Ephedra-Containing Solid Oral Dosage Form, and 3244 Ephedra-Containing Protein Powder. Values are assigned for ephedrine alkaloids and toxic elements in all 5 materials. Values are assigned for other analytes (e.g., caffeine, nutrient elements, proximates, etc.) in some of the materials, as appropriate. Materials in this suite of SRMs are intended for use as primary control materials when values are assigned to in-house (secondary) control materials and for validation of analytical methods for the measurement of alkaloids, toxic elements, and, in the case of SRM 3244, nutrients in similar materials.
Asunto(s)
Ephedra/química , Alcaloides/análisis , Cadmio/análisis , Calcio/análisis , Carbohidratos/análisis , Suplementos Dietéticos/análisis , Ephedra/efectos de la radiación , Ácidos Grasos/análisis , Humedad , Estándares de Referencia , Reproducibilidad de los Resultados , Oligoelementos/análisis , Vitaminas/análisisRESUMEN
Revised delta(34)S reference values with associated expanded uncertainties (95% confidence interval (C.I.)) are presented for the sulfur isotope reference materials IAEA-S-2 (22.62 +/- 0.16 per thousand) and IAEA-S-3 (-32.49 +/- 0.16 per thousand). These revised values are determined using two relative-difference measurement techniques, gas source isotope ratio mass spectrometry (GIRMS) and double-spike multi-collector thermal ionization mass spectrometry (MC-TIMS). Gas analyses have traditionally been considered the most robust for relative isotopic difference measurements of sulfur. The double-spike MC-TIMS technique provides an independent method for value-assignment validation and produces revised values that are both unbiased and more precise than previous value assignments. Unbiased delta(34)S values are required to anchor the positive and negative end members of the sulfur delta (delta) scale because they are the basis for reporting both delta(34)S values and the derived mass-independent Delta(33)S and Delta(36)S values.