Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Immunol ; 45(6): 1808-19, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25756873

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Infiltration of monocytes into the CNS is crucial for disease onset and progression. Animal studies indicate that granulocyte-macrophages colony-stimulating factor (GM-CSF) may play an essential role in this process, possibly by acting on the migratory capacities of myeloid cells across the blood-brain barrier. This study describes the effect of GM-CSF on human monocytes, macrophages, and microglia. Furthermore, the expression of GM-CSF and its receptor was investigated in the CNS under healthy and pathological conditions. We show that GM-CSF enhances monocyte migration across human blood-brain barrier endothelial cells in vitro. Next, immunohistochemical analysis on human brain tissues revealed that GM-CSF is highly expressed by microglia and macrophages in MS lesions. The GM-CSF receptor is expressed by neurons in the rim of combined gray/white matter lesions and astrocytes. Finally, the effect of GM-CSF on human macrophages was determined, revealing an intermediate activation status, with a phenotype similar to that observed in active MS lesions. Together our data indicate that GM-CSF is a powerful stimulator of monocyte migration, and is abundantly present in the inflamed CNS where it may act as an activator of macrophages and microglia.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Migración Transendotelial y Transepitelial/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Barrera Hematoencefálica/patología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Citocinas/metabolismo , Células Endoteliales , Femenino , Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Migración Transendotelial y Transepitelial/efectos de los fármacos
2.
Immunology ; 142(2): 151-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24329535

RESUMEN

Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.


Asunto(s)
Enfermedades Neurodegenerativas/inmunología , Humanos , Inflamación/inmunología , Enfermedades Neurodegenerativas/terapia
3.
J Neuroinflammation ; 11: 23, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24485070

RESUMEN

BACKGROUND: In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of neurons. Their migration within the central nervous system may be of critical importance in the final outcome of neurodegeneration in neuroinflammatory diseases e.g. multiple sclerosis (MS). To provide insight into this process, we examined the migratory capacity of human monocyte-derived M1 and M2 polarised macrophages towards chemoattractants, relevant for neuroinflammatory diseases like MS. METHODS: Primary cultures of human monocyte-derived macrophages were exposed to interferon gamma and lipopolysaccharide (LPS) to evoke proinflammatory (M1) activation or IL-4 to evoke anti-inflammatory (M2) activation. In a TAXIScan assay, migration of M0, M1 and M2 towards chemoattractants was measured and quantified. Furthermore the adhesion capacity and the expression levels of integrins as well as chemokine receptors of M0, M1 and M2 were assessed. Alterations in cell morphology were analysed using fluorescent labelling of the cytoskeleton. RESULTS: Significant differences were observed between M1 and M2 macrophages in the migration towards chemoattractants. We show that M2 macrophages migrated over longer distances towards CCL2, CCL5, CXCL10, CXCL12 and C1q compared to non-activated (M0) and M1 macrophages. No differences were observed in the adhesion of M0, M1 and M2 macrophages to multiple matrix components, nor in the expression of integrins and chemokine receptors. Significant changes were observed in the cytoskeleton organization upon stimulation with CCL2, M0, M1 and M2 macrophages adopt a spherical morphology and the cytoskeleton is rapidly rearranged. M0 and M2 macrophages are able to form filopodia, whereas M1 macrophages only adapt a spherical morphology. CONCLUSIONS: Together our results indicate that the alternative activation status of macrophages promotes their migratory properties to chemoattractants relevant for neuroinflammatory diseases like MS. Conversely, classically activated, proinflammatory macrophages have reduced migratory properties. Based on our results, we postulate that the activation status of the macrophage influences the capacity of the macrophages to rearrange their cytoskeleton. This is the first step in understanding how modulation of macrophage activation affects macrophage migration in neuroinflammatory diseases like MS.


Asunto(s)
Movimiento Celular/fisiología , Citocinas/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Macrófagos/fisiología , Adhesión Celular , Células Cultivadas , Complemento C1q/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Receptores de Quimiocina/metabolismo
4.
Dent J (Basel) ; 12(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38534290

RESUMEN

Background: Dental fear and uncooperative behavior can hinder dental treatment quality. Pediatric Procedural Sedation and Analgesia (PPSA) is used to facilitate treatment when the coping capacity is exceeded. Out-of-hospital PPSA has been associated with more adverse outcomes compared to when it is used in hospital-based settings. The updated Dutch PPSA guidelines have increased costs and raised concerns about the accessibility of specialized high-quality dental care for children in the Netherlands. This study aimed to investigate the impact of the updated 2017 guidelines on the occurrence rate of adverse events during PPSA in twelve Dutch dental clinics. Methods: The data of 25,872 children who were treated at twelve dental clinics between 1997 and 2019 were analyzed. A logistic two-level mixed-effects model was used to estimate the updated guidelines' impacts on adverse events. Results: The OR of the occurrence rate of an adverse event adjusted for age, weight, and duration of treatment was 0.75 (95% CI 0.64-0.89) after the implementation of the updated guidelines. This outcome was significant with p = 0.001, indicating a protective effect. Conclusions: Our findings demonstrate that there was a significant reduction in adverse events after the implementation of the updated guideline and highlight the importance of adhering to evidence-based practices in out-of-hospital dental clinics.

5.
J Neuroinflammation ; 10: 35, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23452918

RESUMEN

BACKGROUND: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. METHODS: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. RESULTS: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. CONCLUSIONS: Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status.


Asunto(s)
Encéfalo/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Adulto , Anciano , Encéfalo/patología , Antígenos CD40/metabolismo , Células Cultivadas , Femenino , Humanos , Mediadores de Inflamación/fisiología , Activación de Macrófagos/fisiología , Masculino , Persona de Mediana Edad
6.
J Neuroimmunol ; 291: 89-95, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26857501

RESUMEN

Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity.


Asunto(s)
Encéfalo/patología , Endotoxinas/farmacología , Lipopolisacáridos/farmacología , Metales/farmacología , Microglía/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Encefalopatías/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Citometría de Flujo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Persona de Mediana Edad
7.
J Neuropathol Exp Neurol ; 74(1): 48-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25470347

RESUMEN

Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis-affected CNS tissues and underscore the plasticity of human adult microglia in vitro.


Asunto(s)
Encéfalo/patología , Antígenos de Histocompatibilidad Clase II/metabolismo , Microglía/patología , Esclerosis Múltiple/patología , Proteína Proteolipídica de la Mielina/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Antígenos CD/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Femenino , Citometría de Flujo , Humanos , Macrófagos/patología , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Proteína Proteolipídica de la Mielina/genética , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Transcriptoma
8.
PLoS One ; 10(4): e0124347, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25884209

RESUMEN

Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR)-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1). In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1) and reduced numbers of CD206-positive (M2) macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular patients.


Asunto(s)
Circulación Colateral/fisiología , Galectina 2/fisiología , Inflamación/fisiopatología , Macrófagos/fisiología , Monocitos/fisiología , Animales , Antígenos CD40/biosíntesis , Diferenciación Celular , Células Cultivadas , Circulación Colateral/efectos de los fármacos , Células Dendríticas/metabolismo , Galectina 2/deficiencia , Galectina 2/genética , Galectina 2/farmacología , Regulación de la Expresión Génica , Humanos , Lectinas Tipo C/biosíntesis , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/fisiología , Macrófagos/clasificación , Macrófagos/efectos de los fármacos , Receptor de Manosa , Lectinas de Unión a Manosa/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Fenotipo , Unión Proteica/efectos de los fármacos , Células RAW 264.7 , Receptores de Superficie Celular/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal , Linfocitos T/metabolismo , Receptor Toll-Like 4/metabolismo
9.
Immunobiology ; 219(9): 695-703, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24916404

RESUMEN

Macrophages form a heterogeneous cell population displaying multiple functions, and can be polarized into pro- (M1) or anti-inflammatory (M2) macrophages, by environmental factors. Their activation status reflects a beneficial or detrimental role in various diseases. Currently several in vitro maturation and activation protocols are used to induce an M1 or M2 phenotype. Here, the impact of different maturation factors (NHS, M-CSF, or GM-CSF) and activation methods (IFN-γ/LPS, IL-4, dexamethason, IL-10) on the macrophage phenotype was determined. Regarding macrophage morphology, pro-inflammatory (M1) activation stimulated cell elongation, and anti-inflammatory (M2) activation induced a circular appearance. Activation with pro-inflammatory mediators led to increased CD40 and CD64 expression, whereas activation with anti-inflammatory factors resulted in increased levels of MR and CD163. Production of pro-inflammatory cytokines was induced by activation with IFN-γ/LPS, and TGF-ß production was enhanced by the maturation factors M-CSF and GM-CSF. Our data demonstrate that macrophage marker expression and cytokine production in vitro is highly dependent on both maturation and activation methods. In vivo macrophage activation is far more complex, since a plethora of stimuli are present. Hence, defining the macrophage activation status ex vivo on a limited number of markers could be indecisive. From this study we conclude that maturation with M-CSF or GM-CSF induces a moderate anti- or pro-inflammatory state respectively, compared to maturation with NHS. CD40 and CD64 are the most distinctive makers for human M1 and CD163 and MR for M2 macrophage activation and therefore can be helpful in determining the activation status of human macrophages ex vivo.


Asunto(s)
Técnicas Inmunológicas , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Técnicas In Vitro , Activación de Macrófagos/efectos de los fármacos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Suero
10.
Mult Scler Relat Disord ; 1(1): 15-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25876447

RESUMEN

Although the primary cause of multiple sclerosis (MS) is unknown, the widely accepted view is that aberrant (auto)immune responses possibly arising following infection(s) are responsible for the destructive inflammatory demyelination and neurodegeneration in the central nervous system (CNS). This notion, and the limited access of human brain tissue early in the course of MS, has led to the development of autoimmune, viral and toxin-induced demyelination animal models as well as the development of human CNS cell and organotypic brain slice cultures in an attempt to understand events in MS. The autoimmune models, collectively known as experimental autoimmune encephalomyelitis (EAE), and viral models have shaped ideas of how environmental factors may trigger inflammation, demyelination and neurodegeneration in the CNS. Understandably, these models have also heavily influenced the development of therapies targeting the inflammatory aspect of MS. Demyelination and remyelination in the absence of overt inflammation are better studied in toxin-induced demyelination models using cuprizone and lysolecithin. The paradigm shift of MS as an autoimmune disease of myelin to a neurodegenerative disease has required more appropriate models reflecting the axonal and neuronal damage. Thus, secondary progressive EAE and spastic models have been crucial to develop neuroprotective approaches. In this review the current in vivo and in vitro experimental models to examine pathological mechanisms involved in inflammation, demyelination and neuronal degeneration, as well as remyelination and repair in MS are discussed. Since this knowledge is the basis for the development of new therapeutic approaches for MS, we particularly address whether the currently available models truly reflect the human disease, and discuss perspectives to further optimise and develop more suitable experimental models to study MS.

11.
CNS Neurol Disord Drug Targets ; 11(5): 570-88, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22583443

RESUMEN

Multiple sclerosis (MS) is widely considered to be the result of an aggressive autoreactive T cell attack on myelin. How these autoimmune responses arise in MS is unclear, but they could result from virus infections. Thus, viral and autoimmune diseases in animals have been used to investigate the possible pathogenic mechanisms operating in MS. The autoimmune model, experimental autoimmune encephalomyelitis, is the most widely-used animal model and has greatly influenced therapeutic approaches targeting autoimmune responses. To investigate demyelination and remyelination in the absence of the adaptive immune response, toxin-induced demyelination models are used. These include using cuprizone, ethidium bromide and lysolecithin to induce myelin damage, which rapidly lead to remyelination when the toxins are withdrawn. The virus models include natural and experimental infections such as canine distemper, visna infection of sheep, and infection of non-human primates. The most commonly used viral models in rodents are Semliki Forest virus and Theiler's murine encephalomyelitis virus. The viral and experimental autoimmune encephalomyelitis models have been instrumental in the understanding of how viruses trigger inflammation, demyelination and neurodegeneration in the central nervous system. However, due to complexity of the animal models, pathological mechanisms are also examined in central nervous system cell culture systems including co-cultures, aggregate cultures and brain slice cultures. Here we critically review in vitro and in vivo models used to investigate MS. Since knowledge gained from these models forms the basis for the development of new therapeutic approaches for MS, we address the applicability of the models. Finally, we provide guidance for using and reporting animal studies with the aim of improving translational studies to the clinic.


Asunto(s)
Autoinmunidad , Modelos Animales de Enfermedad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/fisiopatología , Degeneración Nerviosa/etiología , Animales , Axones/inmunología , Axones/patología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Línea Celular , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/terapia , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Vaina de Mielina/inmunología , Vaina de Mielina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA