Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 56(2): 490-507, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34964531

RESUMEN

BACKGROUND: Automated magnetic resonance imaging (MRI) volumetry is a promising tool to evaluate regional brain volumes in dementia and especially Alzheimer's disease (AD). PURPOSE: To compare automated methods and the gold standard manual segmentation in measuring regional brain volumes on MRI across healthy controls, patients with mild cognitive impairment, and patients with dementia due to AD. STUDY TYPE: Systematic review and meta-analysis. DATA SOURCES: MEDLINE, Embase, and PsycINFO were searched through October 2021. FIELD STRENGTH: 1.0 T, 1.5 T, or 3.0 T. ASSESSMENT: Two review authors independently identified studies for inclusion and extracted data. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). STATISTICAL TESTS: Standardized mean differences (SMD; Hedges' g) were pooled using random-effects meta-analysis with robust variance estimation. Subgroup analyses were undertaken to explore potential sources of heterogeneity. Sensitivity analyses were conducted to examine the impact of the within-study correlation between effect estimates on the meta-analysis results. RESULTS: Seventeen studies provided sufficient data to evaluate the hippocampus, lateral ventricles, and parahippocampal gyrus. The pooled SMD for the hippocampus, lateral ventricles, and parahippocampal gyrus were 0.22 (95% CI -0.50 to 0.93), 0.12 (95% CI -0.13 to 0.37), and -0.48 (95% CI -1.37 to 0.41), respectively. For the hippocampal data, subgroup analyses suggested that the pooled SMD was invariant across clinical diagnosis and field strength. Subgroup analyses could not be conducted on the lateral ventricles data and the parahippocampal gyrus data due to insufficient data. The results were robust to the selected within-study correlation value. DATA CONCLUSION: While automated methods are generally comparable to manual segmentation for measuring hippocampal, lateral ventricle, and parahippocampal gyrus volumes, wide 95% CIs and large heterogeneity suggest that there is substantial uncontrolled variance. Thus, automated methods may be used to measure these regions in patients with AD but should be used with caution. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Ventrículos Laterales , Imagen por Resonancia Magnética/métodos
2.
Epilepsy Behav ; 123: 108241, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450387

RESUMEN

OBJECTIVES: To determine the long-term outcomes in patients undergoing intracranial EEG (iEEG) evaluation for epilepsy surgery in terms of seizure freedom, mood, and quality of life at St. Vincent's Hospital, Melbourne. METHODS: Patients who underwent iEEG between 1999 and 2016 were identified. Patients were retrospectively assessed between 2014 and 2017 by specialist clinic record review and telephone survey with standardized validated questionnaires for: 1) seizure freedom using the Engel classification; 2) Mood using the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E); 3) Quality-of-life outcomes using the QOLIE-10 questionnaire. Summary statistics and univariate analysis were performed to investigate variables for significance. RESULTS: Seventy one patients underwent iEEG surgery: 49 Subdural, 14 Depths, 8 Combination with 62/68 (91.9%) of those still alive, available at last follow-up by telephone survey or medical record review (median of 8.2 years). The estimated epileptogenic zone was 62% temporal and 38% extra-temporal. At last follow-up, 69.4% (43/62) were Engel Class I and 30.6% (19/62) were Engel Class II-IV. Further, a depressive episode (NDDI-E > 15)was observed in 34% (16/47), while a 'better quality of life' (QOLIE-10 score < 25) was noted in 74% (31/42). Quality of life (p < 0.001) but not mood (p = 0.24) was associated with seizure freedom. SIGNIFICANCE: Long-term seizure freedom can be observed in patients undergoing complex epilepsy surgery with iEEG evaluation and is associated with good quality of life.


Asunto(s)
Epilepsia , Calidad de Vida , Electrocorticografía , Electroencefalografía , Epilepsia/cirugía , Libertad , Humanos , Estudios Retrospectivos , Convulsiones , Resultado del Tratamiento
3.
Brain ; 142(4): 932-951, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30805596

RESUMEN

Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72-94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: 'early-phase' (first latency 90% explained variance), 'mid-phase' (first of 50% rising-phase, 50% mean global field power), 'late-phase' (negative peak). 'Earliest-solution' was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3-21 (median 12) months before surgery, 14-39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09-11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19-18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16-12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05-0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not 'more accurate' than HDEEG-emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients. 10.1093/brain/awz015_video1 awz015media1 6018582479001.


Asunto(s)
Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Adolescente , Adulto , Encéfalo , Niño , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Epilepsias Parciales/cirugía , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Convulsiones/diagnóstico por imagen
4.
Brain Topogr ; 33(5): 618-635, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623611

RESUMEN

Head motion is a significant barrier to functional MRI (fMRI) in patients who are unable to tolerate awake scanning, including young children or those with cognitive and behavioural impairments. General anaesthesia minimises motion and ensures patient comfort, however the optimal anaesthesia regimen for fMRI in the paediatric setting is unknown. In this study, we tested the feasibility of anaesthetised fMRI in 11 patients (mean age = 9.8 years) with Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy associated with intellectual disability. fMRI was acquired during clinically-indicated MRI sessions using a synergistic anaesthesia regimen we typically administer for epilepsy neurosurgery: combined low-dose isoflurane (≤ 0.8% end-tidal concentration) with remifentanil (≤ 0.1 mcg/kg/min). Using group-level independent component analysis, we assessed the presence of resting-state networks by spatially comparing results in the anaesthetised patients to resting-state network templates from the 'Generation R' study of 536 similarly-aged non-anaesthetised healthy children (Muetzel et al. in Hum Brain Mapp 37(12):4286-4300, 2016). Numerous resting-state networks commonly studied in non-anaesthetised healthy children were readily identifiable in the anaesthetised patients, including the default-mode, sensorimotor, and frontoparietal networks. Independent component time-courses associated with these networks showed spectral characteristics suggestive of a neuronal origin of fMRI signal fluctuations, including high dynamic range and temporal frequency power predominantly below 0.1 Hz. These results demonstrate the technical feasibility of anaesthetised fMRI in children, suggesting that combined isoflurane-remifentanil anaesthesia may be an effective strategy to extend the emerging clinical applications of resting-state fMRI (for example, neurosurgical planning) to the variety of patient groups who may otherwise be impractical to scan.


Asunto(s)
Anestesia , Epilepsia , Discapacidad Intelectual , Isoflurano , Niño , Epilepsia/diagnóstico por imagen , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Isoflurano/farmacología , Imagen por Resonancia Magnética , Remifentanilo
5.
Epilepsy Behav ; 111: 107290, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759068

RESUMEN

Psychosis of epilepsy (POE) can be a devastating condition, and its neurobiological basis remains unclear. In a previous study, we identified reduced posterior hippocampal volumes in patients with POE. The hippocampus can be further subdivided into anatomically and functionally distinct subfields that, along with the hippocampal fissure, have been shown to be selectively affected in other psychotic disorders and are not captured by gross measures of hippocampal volume. Therefore, in this study, we compared the volume of selected hippocampal subfields and the hippocampal fissure in 31 patients with POE with 31 patients with epilepsy without psychosis. Cortical reconstruction, volumetric segmentation, and calculation of hippocampal subfields and the hippocampal fissure were performed using FreeSurfer. The group with POE had larger hippocampal fissures bilaterally compared with controls with epilepsy, which was significant on the right. There were no significant differences in the volumes of the hippocampal subfields between the two groups. Our findings suggest abnormal development of the hippocampus in POE. They support and expand the neurodevelopmental model of psychosis, which holds that early life stressors lead to abnormal neurodevelopmental processes, which underpin the onset of psychosis in later life. In line with this model, the findings of the present study suggest that enlarged hippocampal fissures may be a biomarker of abnormal neurodevelopment and risk for psychosis in patients with epilepsy.


Asunto(s)
Epilepsia/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Adulto , Epilepsia/epidemiología , Epilepsia/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/psicología , Estudios Retrospectivos , Adulto Joven
6.
J Neurol Neurosurg Psychiatry ; 90(6): 688-694, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30796132

RESUMEN

OBJECTIVE: Psychosis of epilepsy (POE) occurs more frequently in temporal lobe epilepsy, raising the question as to whether abnormalities of the hippocampus are aetiologically important. Despite decades of investigation, it is unclear whether hippocampal volume is reduced in POE, perhaps due to small sample sizes and methodological limitations of past research. METHODS: In this study, we examined the volume of the total hippocampus, and the hippocampal head, body and tail, in a large cohort of patients with POE and patients with epilepsy without psychosis (EC). One hundred adults participated: 50 with POE and 50 EC. Total and subregional hippocampal volumes were manually traced and compared between (1) POE and EC; (2) POE with temporal lobe epilepsy, extratemporal lobe epilepsy and generalised epilepsy; and (3) patients with POE with postictal psychosis (PIP) and interictal psychosis (IP). RESULTS: Compared with EC the POE group had smaller total left hippocampus volume (13.5% decrease, p<0.001), and smaller left hippocampal body (13.3% decrease, p=0.002), and left (41.5% decrease, p<0.001) and right (36.4% decrease, p<0.001) hippocampal tail volumes. Hippocampal head volumes did not differ between groups. CONCLUSION: Posterior hippocampal volumes are bilaterally reduced in POE. Volume loss was observed on a posteroanterior gradient, with severe decreases in the tail and moderate volume decreases in the body, with no difference in the hippocampal head. Posterior hippocampal atrophy is evident to a similar degree in PIP and IP. Our findings converge with those reported for the paradigmatic psychotic disorder, schizophrenia, and suggest that posterior hippocampal atrophy may serve as a biomarker of the risk for psychosis, including in patients with epilepsy.


Asunto(s)
Epilepsia/complicaciones , Hipocampo/patología , Trastornos Psicóticos/etiología , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Tamaño de los Órganos , Estudios Prospectivos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Estudios Retrospectivos , Adulto Joven
7.
Epilepsia ; 58(12): 2025-2037, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29063584

RESUMEN

According to the International League Against Epilepsy (ILAE) definition, no structural abnormalities are present on a standard brain magnetic resonance image in genetic generalized epilepsy (GGE) patients. However, recent studies raise contradictory evidence with increasing use of quantitative magnetic resonance imaging techniques. Following PRISMA guidelines, a systematic, quantitative review was conducted using 28 peer-reviewed, case-control studies published after 1989. Furthermore, a meta-analysis with a random-effect model revealed differences in structural brain abnormalities between GGE patients and controls. Significant structural differences between GGE and healthy controls were observed with volume reductions in whole brain, thalamus, putamen, caudate, pallidum, and supplementary motor area. Furthermore, gray matter volume reduction in the right and left hemispheres, thalamus, and insula, and surface area reduction in the caudal anterior cingulate cortex were revealed, along with gray matter increase in the medial frontal gyrus. Due to methodological differences, findings should be interpreted with caution. Nevertheless, contrary to the ILAE definition, it would appear that structural brain abnormalities may be present in GGE patients. Findings are consistent with a hypothesis regarding the underlying involvement of the thalamocortical networks in the generation of generalized spike-wave discharges, but structural abnormalities appear to extend outside these regions to potentially involve attention and other cognitive domains.


Asunto(s)
Encéfalo/patología , Epilepsia Generalizada/genética , Epilepsia Generalizada/patología , Encéfalo/diagnóstico por imagen , Epilepsia Generalizada/diagnóstico por imagen , Humanos
8.
Epilepsia ; 58(5): e75-e81, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28295228

RESUMEN

We previously observed that adults with Lennox-Gastaut syndrome (LGS) show abnormal functional connectivity among cognitive networks, suggesting that this may contribute to impaired cognition. Herein we report network reorganization following seizure remission in a child with LGS who underwent functional magnetic resonance imaging (fMRI) before and after resection of a cortical dysplasia. Concurrent electroencephalography (EEG) was acquired during presurgical fMRI. Presurgical and postsurgical functional connectivity were compared using (1) graph theoretical analyses of small-world network organization and node-wise strength; and (2) seed-based analyses of connectivity within and between five functional networks. To explore the specificity of these postsurgical network changes, connectivity was further compared to nine children with LGS who did not undergo surgery. The presurgical EEG-fMRI revealed diffuse activation of association cortex during interictal discharges. Following surgery and seizure control, functional connectivity showed increased small-world organization, stronger connectivity in subcortical structures, and greater within-network integration/between-network segregation. These changes suggest network improvement, and diverged sharply from the comparison group of nonoperated children. Following surgery, this child with LGS achieved seizure control and showed extensive reorganization of networks that underpin cognition. This case illustrates that the epileptic process of LGS can directly contribute to abnormal network organization, and that this network disruption may be reversible.


Asunto(s)
Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Síndrome de Lennox-Gastaut/fisiopatología , Síndrome de Lennox-Gastaut/cirugía , Imagen por Resonancia Magnética , Red Nerviosa/fisiopatología , Plasticidad Neuronal/fisiología , Complicaciones Posoperatorias/fisiopatología , Lobectomía Temporal Anterior , Estudios de Casos y Controles , Niño , Preescolar , Trastornos del Conocimiento/diagnóstico , Electroencefalografía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Complicaciones Posoperatorias/diagnóstico , Procesamiento de Señales Asistido por Computador
9.
Brain ; 139(Pt 10): 2653-2667, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27497492

RESUMEN

SEE DUCHOWNY DOI101093/AWW216 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Multiple seizure foci, seizure propagation and epileptic spasms complicate presurgical seizure localization in tuberous sclerosis. Furthermore, controversy exists about the contribution of tubers, perituberal cortex and the underlying genetic abnormality to epileptogenesis. We aimed to determine the epileptogenic substrate in tuberous sclerosis by studying spatio-temporal patterns of seizure onset and propagation on intracranial EEG recordings in which multiple depth and surface electrodes sampled multiple tubers and perituberal cortex. Ten intracranial EEG recordings (seven extraoperative, three intraoperative) from 10 children with tuberous sclerosis were analysed. Notable thickening and signal abnormality in the centre of many tubers on magnetic resonance imaging led to tuber centres being recorded with depth electrodes. Spatially-meaningful bipolar montages were reformatted incorporating channels recording only from the tuber centre, tuber rim and perituberal cortex. Interictal epileptiform discharges and ictal rhythms were analysed visually for location, field, morphology, frequency, latency and temporal dispersion. Fifteen electroclinically distinct seizures were recorded in the 10 patients. Seizure onset was recorded in tubers in all 15 electroclinically distinct seizures; in 9/10 electroclinically distinct seizures recorded with optimal spatial sampling, seizure onset was recorded in the tuber centre, with or without involvement of the tuber rim but not perituberal cortex. Quantitative electroencephalography analysis by pairwise cross-correlation confirmed that the tuber centre led the tuber rim and perituberal cortex during interictal, preictal and ictal spike trains. Seizure propagation was observed in 10/15 electroclinically distinct seizures, being tuber-to-tuber in all. Seven of the 17 tubers showing seizure propagation activated an independent ictal rhythm, morphologically distinct from that seen in seizure onset region (intra-ictal activation). Of the total 48 tubers sampled, 16 exhibited seizure onset, 17 were involved in seizure propagation and 40 exhibited interictal epileptiform discharges, 33 independent and seven propagated. Seizure onsets were recorded in 16/33 tubers with independent interictal epileptiform discharges, but 0/7 tubers with only propagated epileptiform discharges or 0/8 tubers with no epileptiform discharges (P = 0.003). Seizure onsets were recorded from 4/7 tubers with and 0/10 tubers without intra-ictal activation (P = 0.015). Thus, focal seizures and interictal epileptiform discharges in tuberous sclerosis arise in the centre of epileptogenic tubers and propagate to the tuber rim, perituberal cortex and other epileptogenic tubers. Rhythmic interictal epileptiform discharges and intra-ictal activation of propagated ictal rhythms are potential biomarkers of epileptogenic tubers. Interictal and ictal EEG features of epileptogenic tubers have similarities to focal cortical dysplasia type II, consistent with the reported imaging, histological and molecular similarities.

10.
Exp Brain Res ; 234(9): 2629-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27150317

RESUMEN

Transcranial direct current stimulation (tDCS) uses a weak electric current to modulate neuronal activity. A neurophysiologic outcome measure to demonstrate reliable tDCS modulation at the group level is transcranial magnetic stimulation engendered motor evoked potentials (MEPs). Here, we conduct a study testing the reliability of individual MEP response patterns following a common tDCS protocol. Fourteen participants (7m/7f) each underwent nine randomized sessions of 1 mA, 10 min tDCS (3 anode; 3 cathode; 3 sham) delivered using an M1/orbito-frontal electrode montage (sessions separated by an average of ~5.5 days). Fifteen MEPs were obtained prior to, immediately following and in 5 min intervals for 30 min following tDCS. TMS was delivered at 130 % resting motor threshold using neuronavigation to ensure consistent coil localization. A number of non-experimental variables were collected during each session. At the individual level, considerable variability was seen among different testing sessions. No participant demonstrated an excitatory response ≥20 % to all three anodal sessions, and no participant demonstrated an inhibitory response ≥20 % to all three cathodal sessions. Intra-class correlation revealed poor anodal and cathodal test-retest reliability [anode: ICC(2,1) = 0.062; cathode: ICC(2,1) = 0.055] and moderate sham test-retest reliability [ICC(2,1) = 0.433]. Results also revealed no significant effect of tDCS at the group level. Using this common protocol, we found the effects of tDCS on MEP amplitudes to be highly variable at the individual level. In addition, no significant effects of tDCS on MEP amplitude were found at the group level. Future studies should consider utilizing a more strict experimental protocol to potentially account for intra-individual response variations.


Asunto(s)
Potenciales Evocados Motores/fisiología , Reproducibilidad de los Resultados , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Adulto Joven
11.
Ann Neurol ; 74(5): 743-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23686575

RESUMEN

OBJECTIVE: We used transcranial magnetic stimulation to determine menstrual cycle-related changes in cortical excitability in women with and without catamenial epilepsy and investigated whether these changes differed between ovulatory and anovulatory cohorts. METHODS: Healthy nonepilepsy women and women with generalized and focal epilepsy were investigated during ovulatory (n=11, 46, and 43, respectively) and anovulatory (n=9, 42, and 41) cycles. Patients were divided based on seizure pattern into catamenial (C1=perimenstrual, C2=periovulatory, C3=luteal seizure exacerbation), noncatamenial, and seizure free. Cortical excitability was assessed using motor threshold (MT) and paired pulse stimulation at short (2-15 milliseconds) and long (100-300 milliseconds) interstimulus intervals twice, at the (1) late follicular and (2) mid luteal phases of the menstrual cycle. RESULTS: In controls, cortical excitability was greatest in the follicular study, where intracortical facilitation was increased (p<0.05). The opposite was seen in women with epilepsy, where intracortical facilitation was greatest and intracortical inhibition was least in the luteal studies (p<0.05). There were no differences between the ovulatory and anovulatory groups in any of the cohorts. No changes were observed in MT. INTERPRETATION: Nonhormonal factors are involved in the cyclicity of cortical excitability across the menstrual cycle. Normal menstrual cycle variations in cortical excitability are altered in a similar pattern in ovulatory and anovulatory women with epilepsy regardless of seizure patterns. The underlying neural changes associated with epilepsy may alter responses to sex hormones. This may be an important underlying mechanism for catamenial seizure clustering.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsias Parciales/fisiopatología , Epilepsia Generalizada/fisiopatología , Ciclo Menstrual/fisiología , Adolescente , Adulto , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Estimulación Magnética Transcraneal
12.
Brain ; 136(Pt 4): 1177-91, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23485850

RESUMEN

We used transcranial magnetic stimulation to investigate whether the cortical excitability changes observed amongst the different generalized and focal epilepsy syndromes are reflected in their asymptomatic siblings and if these changes depended on the clinical phenotype. We studied 157 patients with epilepsy (95 generalized and 62 focal) and their asymptomatic siblings (138 and 82, respectively). Motor threshold and paired pulse transcranial magnetic stimulation at short (2, 5, 10 and 15 ms) and long (100-300 ms) interstimulus intervals were measured. Results were compared to those of 12 control subjects and 20 of their siblings. There were no differences in cortical excitability between healthy control subjects and their siblings. Compared with control subjects, cortical excitability was higher in siblings of patients whether generalized (P < 0.05; short and long interstimulus intervals) or focal (P < 0.05; long interstimulus intervals). Compared with epilepsy, motor threshold was lower (P < 0.05) in patients with juvenile myoclonic epilepsy compared with their siblings only early at onset in the drug naïve state. In all groups (generalized and focal) cortical excitability was lower in siblings only at the long interstimulus intervals (250 and 300; P < 0.05). Cortical excitability is higher in asymptomatic siblings of patients with generalized and focal epilepsy in a similar manner. The disturbance seems to involve intracortical inhibitory circuits even in the siblings of patients with a structural abnormality (acquired epilepsy). This implies there are certain genetic factors that predispose to both generalized and focal epilepsies and a complex genetic/environmental interaction then determines the clinical phenotype.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia/fisiopatología , Hermanos , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Corteza Cerebral/fisiología , Epilepsias Parciales/genética , Epilepsias Parciales/fisiopatología , Epilepsia/genética , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Corteza Motora/fisiopatología , Epilepsia Mioclónica Juvenil/genética , Epilepsia Mioclónica Juvenil/fisiopatología , Estimulación Magnética Transcraneal/instrumentación , Adulto Joven
13.
J Clin Neurophysiol ; 41(1): 8-18, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181383

RESUMEN

SUMMARY: EEG source imaging (ESI) has gained traction in recent years as a useful clinical tool for the noninvasive surgical work-up of patients with drug-resistant focal epilepsy. Despite its proven benefits for the temporo-spatial modeling of spike and seizure sources, ESI remains widely underused in clinical practice. This partly relates to a lack of clarity around an optimal approach to the acquisition and processing of scalp EEG data for the purpose of ESI. Here, we describe some of the practical considerations for the clinical application of ESI. We focus on patient preparation, the impact of electrode number and distribution across the scalp, the benefit of averaging raw data for signal analysis, and the relevance of modeling different phases of the interictal discharge as it evolves from take-off to peak. We emphasize the importance of recording high signal-to-noise ratio data for reliable source analysis. We argue that the accuracy of modeling cortical sources can be improved using higher electrode counts that include an inferior temporal array, by averaging interictal waveforms rather than limiting ESI to single spike analysis, and by careful interrogation of earlier phase components of these waveforms. No amount of postacquisition signal processing or source modeling sophistication, however, can make up for suboptimally recorded scalp EEG data in a poorly prepared patient.


Asunto(s)
Epilepsia Refractaria , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Electrodos , Electroencefalografía , Alta del Paciente , Cuero Cabelludo
14.
Brain Behav ; 14(5): e3505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688879

RESUMEN

INTRODUCTION: The current study examined the contributions of comprehensive neuropsychological assessment and volumetric assessment of selected mesial temporal subregions on structural magnetic resonance imaging (MRI) to identify patients with amnestic mild cognitive impairment (aMCI) and mild probable Alzheimer's disease (AD) dementia in a memory clinic cohort. METHODS: Comprehensive neuropsychological assessment and automated entorhinal, transentorhinal, and hippocampal volume measurements were conducted in 40 healthy controls, 38 patients with subjective memory symptoms, 16 patients with aMCI, 16 patients with mild probable AD dementia. Multinomial logistic regression was used to compare the neuropsychological and MRI measures. RESULTS: Combining the neuropsychological and MRI measures improved group membership prediction over the MRI measures alone but did not improve group membership prediction over the neuropsychological measures alone. CONCLUSION: Comprehensive neuropsychological assessment was an important tool to evaluate cognitive impairment. The mesial temporal volumetric MRI measures contributed no diagnostic value over and above the determinations made through neuropsychological assessment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/normas , Masculino , Femenino , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Pruebas Neuropsicológicas/normas , Persona de Mediana Edad , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Neuroimagen/métodos , Neuroimagen/normas , Estudios de Cohortes
15.
Brain Imaging Behav ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381323

RESUMEN

A relationship between migraine without aura (MO) and patent foramen ovale (PFO) has been observed, but the neural basis underlying this relationship remains elusive. Utilizing independent component analysis via functional magnetic resonance imaging, we examined functional connectivity (FC) within and across networks in 146 patients with MO (75 patients with and 71 patients without PFO) and 70 healthy controls (35 patients each with and without PFO) to elucidate the individual effects of MO and PFO, as well as their interaction, on brain functional networks. The main effect of PFO manifested exclusively in the FC among the visual, auditory, default mode, dorsal attention and salience networks. Furthermore, the interaction effect between MO and PFO was discerned in brain clusters of the left frontoparietal network and lingual gyrus network, as well as the internetwork FC between the left frontoparietal network and the default mode network (DMN), the occipital pole and medial visual networks, and the dorsal attention and salience networks. Our findings suggest that the presence of a PFO shunt in patients with MO is accompanied by various FC changes within and across networks. These changes elucidate the intricate mechanisms linked to PFO-associated migraines and provide a basis for identifying novel noninvasive biomarkers.

16.
EBioMedicine ; 102: 105061, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537603

RESUMEN

BACKGROUND: In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS: We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS: The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION: A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING: This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.


Asunto(s)
Encéfalo , Gráficos de Crecimiento , Humanos , Niño , Adolescente , Estudios Transversales , Redes Neurales de la Computación , Electroencefalografía
17.
Epilepsia ; 54(5): 871-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23551088

RESUMEN

PURPOSE: To investigate whether using transcranial magnetic stimulation (TMS) to derive if measures of cortical excitability changes can distinguish between various adolescent/adult-onset generalized epilepsy syndromes at different phases of the disorder. METHODS: One hundred thirty-seven patients with adolescent/adult-onset generalized epilepsy divided into juvenile myoclonic epilepsy, juvenile absence epilepsy, and generalized epilepsy with tonic-clonic seizures only were studied. The cohorts were further divided into drug naive-new onset, refractory, and seizure-free groups. Motor threshold (MT) and paired pulse TMS at short (2, 5, 10, 15 msec) and long (100-300 msec) interstimulus intervals (ISIs) were measured. Results were compared to those of 20 controls. KEY FINDINGS: In the drug-naive cohorts MT was reduced (p < 0.05) and cortical excitability increased at 2 and 5 msec and 150, 250, and 300 msec ISIs (p < 0.01) in juvenile myoclonic epilepsy compared to other generalized epilepsy groups and controls. Cortical excitability increased to a lesser degree in other generalized epilepsy syndromes compared to controls, but those two syndromes were not distinguishable from one another. The changes in paired pulse TMS were more prominent in the groups with refractory seizures and very small in the groups who were seizure free. SIGNIFICANCE: There are syndrome specific changes in cortical excitability associated with generalized epilepsy. These changes are also dependent on seizure control with medication. Juvenile myoclonic epilepsy has a higher cortical excitability profile compared to other adolescent/adult-onset generalized epilepsy syndromes and can be clearly distinguished from them during all phases.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/patología , Epilepsia Generalizada/patología , Epilepsia Generalizada/fisiopatología , Potenciales Evocados Motores/fisiología , Epilepsia Mioclónica Juvenil/patología , Adolescente , Adulto , Edad de Inicio , Estudios de Cohortes , Epilepsia Tipo Ausencia/fisiopatología , Femenino , Humanos , Masculino , Factores de Tiempo , Estimulación Magnética Transcraneal , Resultado del Tratamiento , Adulto Joven
18.
Epilepsia ; 54(11): 1942-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112043

RESUMEN

PURPOSE: Transcranial magnetic stimulation (TMS) was used to characterize measurable changes of cortical excitability in patients who were undergoing medical and surgical management of temporal lobe epilepsy (TLE) to investigate whether these alterations depended on timing of achieving seizure control throughout the course of illness and method of management. METHODS: Eighty-five patients with TLE divided into (1) drug naive-new onset, (2) early medically refractor, and (3) late medically refractory, (4) early seizure-free on antiepileptic drugs, and (5) late seizure-free on antiepileptic drugs, (6) postoperative refractory, and (7) postoperative seizure-free groups were studied. Motor threshold (MT) and paired-pulse TMS at short (2, 5, 10, and 15 msec) and long (100-300 msec) interstimulus intervals (ISIs) were measured. Results were compared to those of 20 controls. KEY FINDINGS: A significant interhemispheric difference was observed early at onset prior to starting medication, with higher cortical excitability in the hemisphere ipsilateral to the seizure focus, whereas the unaffected hemisphere was normal. After that, cortical excitability was higher in both hemispheres in the refractory groups (medical and postoperative) compared to the seizure-free and drug-naive groups (p < 0.05). This effect was most prominent at the long ISIs. SIGNIFICANCE: Changes in cortical excitability seen in patients with TLE are influenced by the course of the disease. The alterations that occur due to epilepsy are closely related to course of illness and degree/timing of seizure control. Successful management leads to resolution of this cortical hyperexcitability in a similar fashion regardless of method: medication (intact generator, but modulated by drugs) or surgery (generator removed).


Asunto(s)
Anticonvulsivantes/uso terapéutico , Corteza Cerebral , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/cirugía , Adolescente , Adulto , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/cirugía , Electroencefalografía/métodos , Potenciales Evocados Motores/efectos de los fármacos , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Adulto Joven
20.
Epilepsy Behav ; 27(3): 455-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23603690

RESUMEN

OBJECTIVE: We used transcranial magnetic stimulation (TMS) to investigate motor cortical excitability changes in relation to blood glucose levels. METHODS: Twenty-two drug-naïve patients with epilepsy [11 generalized and 11 focal] and 10 controls were studied twice on the same day; first after 12h of fasting and then 2h postprandial. Motor threshold and paired-pulse TMS at a number of short and long interstimulus intervals were measured. Serum glucose levels were measured each time. RESULTS: Decreased long intracortical inhibition was seen in patients and controls during fasting compared to postprandial studies. This effect was much more prominent in patients with generalized epilepsy (with effect sizes of up to 0.8) in whom there was also evidence of increased intracortical facilitation (effect size: 0.3). CONCLUSION: Cortical excitability varies with fluctuations in blood glucose levels. This variation is more prominent in patients with epilepsy. Decreased glucose levels may be an important physiological seizure trigger.


Asunto(s)
Glucemia , Corteza Cerebral/fisiopatología , Epilepsia/sangre , Epilepsia/patología , Potenciales Evocados Motores/fisiología , Estadística como Asunto , Adolescente , Adulto , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA