Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806692

RESUMEN

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

2.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766573

RESUMEN

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Asunto(s)
Proteoglicanos/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Electroencefalografía , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteoglicanos/análisis , Proteoglicanos/genética , Receptores AMPA/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética
3.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977636

RESUMEN

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Asunto(s)
Epilepsia , Convulsiones , Animales , Femenino , Humanos , Ratones , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo
4.
Cell Mol Life Sci ; 78(3): 1029-1050, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32468095

RESUMEN

Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2-/- mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2-/- mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2-/- mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2-/- mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2-/- were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2-/- phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better  performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Envejecimiento , Animales , Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Cromatografía Líquida de Alta Presión , Giro Dentado/metabolismo , Análisis Discriminante , Familia de Proteínas EGF/deficiencia , Familia de Proteínas EGF/genética , Femenino , Hígado/metabolismo , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Componente Principal , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/deficiencia , Receptores del Ácido Lisofosfatídico/genética , Espectrometría de Masas en Tándem
5.
Anal Chem ; 93(8): 3867-3875, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577289

RESUMEN

Matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) is an emerging label-free method for mapping the distribution of diverse molecular species in tissue sections. Despite recent progress in MALDI-MSI analyses of lipids, it is still difficult to visualize minor bioactive lipids including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Here, we have developed a novel on-tissue derivatization method using Phos-tag, a zinc complex that specifically binds to a phosphate monoester group. MALDI-MSI with Phos-tag derivatization made it possible to image LPA and S1P in the murine brain. Furthermore, we were able to visualize other low-abundance lipids containing phosphate monoester, such as phosphatidic acid and ceramide-1-phosphate. Compared with conventional MALDI-MS, this derivatization produced LPA images with high spatial accuracy discriminating LPA artificially produced during MALDI-MS analysis. In mice with deficiencies in enzymes that degrade LPA and S1P, we observed marked S1P and/or LPA accumulation in specific regions of the brain. Thus, the present study provides a simple and optimal way to reveal the spatial localization of potent bioactive lipid phosphates such as LPA and S1P in tissues.


Asunto(s)
Lípidos , Fosfatos , Animales , Ratones , Piridinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Mol Psychiatry ; 25(11): 3108, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30602735

RESUMEN

Following the publication of this article the authors noted that Torfi Sigurdsson's name was misspelled. Instead of Sigrudsson it should be Sigurdsson. The PDF and HTML versions of the paper have been modified accordingly. The authors would like to apologise for this error and the inconvenience this may have caused.

7.
Mol Psychiatry ; 23(8): 1699-1710, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743582

RESUMEN

Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Inhibición Neural/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Sinapsis/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Humanos , Ketamina , Lisofosfolípidos/farmacología , Trastornos Mentales/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Hidrolasas Diéster Fosfóricas/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , Psicotrópicos/farmacología , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Cereb Cortex ; 27(1): 131-145, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27909001

RESUMEN

Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.


Asunto(s)
Axones/fisiología , Señalización del Calcio/fisiología , Ácido Glutámico/metabolismo , Redes y Vías Metabólicas/fisiología , Proyección Neuronal/fisiología , Fosfolípidos/metabolismo , Transmisión Sináptica/fisiología , Animales , Axones/ultraestructura , Calcio/metabolismo , Células Cultivadas , Ratones
9.
Cereb Cortex ; 26(7): 3260-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26980613

RESUMEN

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Transmisión Sináptica/fisiología , Tálamo/metabolismo , Vibrisas/fisiología , Animales , Proteínas de Unión a Calmodulina/genética , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Equilibrio Postural/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Percepción del Tacto/fisiología , Caminata/fisiología
10.
Anal Chem ; 87(3): 1749-56, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25548943

RESUMEN

Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 µm. Quantification of lipid species is achieved by the inclusion of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method with successive polarity shifting, high-resolution Fourier transform mass spectrometry (FTMS), and fragmentation analysis. We benchmarked the performance of the PLESA approach for in-depth lipidome analysis by comparing it to conventional lipid extraction of excised tissue homogenates and by mapping the spatial distribution and molar abundance of 170 molecular lipid species across different anatomical mouse brain regions.


Asunto(s)
Encéfalo/metabolismo , Lípidos/análisis , Extracción Líquido-Líquido/instrumentación , Espectrometría de Masas/instrumentación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Presión , Espectroscopía Infrarroja por Transformada de Fourier
11.
Proc Natl Acad Sci U S A ; 109(29): 11836-41, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753484

RESUMEN

The expansion of the neocortex during mammalian brain evolution results primarily from an increase in neural progenitor cell divisions in its two principal germinal zones during development, the ventricular zone (VZ) and the subventricular zone (SVZ). Using mRNA sequencing, we analyzed the transcriptomes of fetal human and embryonic mouse VZ, SVZ, and cortical plate. In mouse, the transcriptome of the SVZ was more similar to that of the cortical plate than that of the VZ, whereas in human the opposite was the case, with the inner and outer SVZ being highly related to each other despite their cytoarchitectonic differences. We describe sets of genes that are up- or down-regulated in each germinal zone. These data suggest that cell adhesion and cell-extracellular matrix interactions promote the proliferation and self-renewal of neural progenitors in the developing human neocortex. Notably, relevant extracellular matrix-associated genes include distinct sets of collagens, laminins, proteoglycans, and integrins, along with specific sets of growth factors and morphogens. Our data establish a basis for identifying novel cell-type markers and open up avenues to unravel the molecular basis of neocortex expansion during evolution.


Asunto(s)
Evolución Biológica , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Células Madre/citología , Transcriptoma/genética , Análisis de Varianza , Animales , Adhesión Celular/fisiología , Análisis por Conglomerados , Cartilla de ADN/genética , Feto/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Captura por Microdisección con Láser , Ratones , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , ARN Mensajero/genética , Análisis de Secuencia de ARN
12.
Proteomics ; 14(21-22): 2607-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25211037

RESUMEN

Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion-mobility enhanced data-independent label-free LC-MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3-based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 (http://proteomecentral.proteomexchange.org/dataset/PXD000590).


Asunto(s)
Hipocampo/química , Densidad Postsináptica/química , Proteínas/análisis , Proteómica , Animales , Ratones
13.
Front Immunol ; 15: 1295863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500875

RESUMEN

Colorectal cancer (CRC) is a complex and heterogeneous disease characterized by dysregulated interactions between tumor cells and the immune system. The tumor microenvironment plays a pivotal role in cancer initiation as well as progression, with myeloid immune cells such as dendritic cell and macrophage subsets playing diverse roles in cancer immunity. On one hand, they exert anti-tumor effects, but they can also contribute to tumor growth. The AOM/DSS colitis-associated cancer mouse model has emerged as a valuable tool to investigate inflammation-driven CRC. To understand the role of different leukocyte populations in tumor development, the preparation of single cell suspensions from tumors has become standard procedure for many types of cancer in recent years. However, in the case of AOM/DSS-induced colorectal tumors, this is still challenging and rarely described. For one, to be able to properly distinguish tumor-associated immune cells, separate processing of cancerous and surrounding colon tissue is essential. In addition, cell yield, due to the low tumor mass, viability, as well as preservation of cell surface epitopes are important for successful flow cytometric profiling of tumor-infiltrating leukocytes. Here we present a fast, simple, and economical step-by-step protocol for isolating colorectal tumor-associated leukocytes from AOM/DSS-treated mice. Furthermore, we demonstrate the feasibility of this protocol for high-dimensional flow cytometric identification of the different tumor-infiltrating leukocyte populations, with a specific focus on myeloid cell subsets.


Asunto(s)
Neoplasias Colorrectales , Animales , Ratones , Azoximetano/efectos adversos , Modelos Animales de Enfermedad , Citometría de Flujo , Leucocitos/metabolismo , Microambiente Tumoral
14.
Mucosal Immunol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663461

RESUMEN

Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt+ Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.

15.
Anal Biochem ; 443(1): 88-96, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23994565

RESUMEN

Detailed analysis of lipid species can be challenging due to their structural diversity and wide concentration range in cells, tissues, and biofluids. To address these analytical challenges, we devised a reproducible, sensitive, and integrated lipidomics workflow based on normal-phase liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) and LC-ITMS(2) (ion trap tandem mass spectrometry) for profiling and structural analysis of lipid species. The workflow uses a normal-phase LC system for efficient separation of apolar and polar lipid species combined with sensitive and specific analysis powered by a chip-based nanoelectrospray ion source and a hybrid ion trap-orbitrap mass spectrometer. The workflow was executed using a primary LC-FTMS survey routine for identification and profiling of lipid species based on high-mass accuracy and retention time followed by a targeted LC-ITMS(2) routine for characterizing the fatty acid moieties of identified lipid species. We benchmarked the performance of the workflow by characterizing the chromatographic properties of the LC-MS system for general lipid analysis. In addition, we demonstrate the efficacy of the workflow by reporting a study of low-abundant triacylglycerol and ceramide species in mouse brain cerebellum and 3T3-L1 adipocytes, respectively. The workflow described here is generic and can be extended for detailed lipid analysis of sample matrices having a wide range of lipid compositions.


Asunto(s)
Células 3T3-L1/química , Ceramidas/aislamiento & purificación , Cerebelo/química , Triglicéridos/aislamiento & purificación , Animales , Ceramidas/clasificación , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triglicéridos/clasificación
16.
Cell Mol Life Sci ; 69(7): 1179-91, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22068610

RESUMEN

During development, axonal projections have a remarkable ability to innervate correct dendritic subcompartments of their target neurons and to form regular neuronal circuits. Altered axonal targeting with formation of synapses on inappropriate neurons may result in neurodevelopmental sequelae, leading to psychiatric disorders. Here we show that altering the expression level of the polysialic acid moiety, which is a developmentally regulated, posttranslational modification of the neural cell adhesion molecule NCAM, critically affects correct circuit formation. Using a chemically modified sialic acid precursor (N-propyl-D: -mannosamine), we inhibited the polysialyltransferase ST8SiaII, the principal enzyme involved in polysialylation during development, at selected developmental time-points. This treatment altered NCAM polysialylation while NCAM expression was not affected. Altered polysialylation resulted in an aberrant mossy fiber projection that formed glutamatergic terminals on pyramidal neurons of the CA1 region in organotypic slice cultures and in vivo. Electrophysiological recordings revealed that the ectopic terminals on CA1 pyramids were functional and displayed characteristics of mossy fiber synapses. Moreover, ultrastructural examination indicated a "mossy fiber synapse"-like morphology. We thus conclude that homeostatic regulation of the amount of synthesized polysialic acid at specific developmental stages is essential for correct synaptic targeting and circuit formation during hippocampal development.


Asunto(s)
Homeostasis , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sinapsis/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL
17.
Proc Natl Acad Sci U S A ; 107(38): 16595-600, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823249

RESUMEN

Mutations in ASPM (abnormal spindle-like microcephaly associated) cause primary microcephaly in humans, a disorder characterized by a major reduction in brain size in the apparent absence of nonneurological anomalies. The function of the Aspm protein in neural progenitor cell expansion, as well as its localization to the mitotic spindle and midbody, suggest that it regulates brain development by a cell division-related mechanism. Furthermore, evidence that positive selection affected ASPM during primate evolution has led to suggestions that such a function changed during primate evolution. Here, we report that in Aspm mutant mice, truncated Aspm proteins similar to those causing microcephaly in humans fail to localize to the midbody during M-phase and cause mild microcephaly. A human ASPM transgene rescues this phenotype but, interestingly, does not cause a gain of function. Strikingly, truncated Aspm proteins also cause a massive loss of germ cells, resulting in a severe reduction in testis and ovary size accompanied by reduced fertility. These germline effects, too, are fully rescued by the human ASPM transgene, indicating that ASPM is functionally similar in mice and humans. Our findings broaden the spectrum of phenotypic effects of ASPM mutations and raise the possibility that positive selection of ASPM during primate evolution reflects its function in the germline.


Asunto(s)
Microcefalia/genética , Mutación , Proteínas del Tejido Nervioso/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Encéfalo/anomalías , Proteínas de Unión a Calmodulina , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Células Madre Embrionarias/patología , Femenino , Mutación de Línea Germinal , Humanos , Infertilidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microcefalia/patología , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Oligospermia/genética , Ovario/anomalías , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Motilidad Espermática/genética , Testículo/anomalías
18.
Front Vet Sci ; 10: 1225796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841456

RESUMEN

Introduction: Sarcocystis is a genus of cyst-forming parasites that infest both humans and livestock. Some parasites cause clinical and subclinical diseases in their hosts, resulting in economic losses. Methods: Esophagus, diaphragm, and skeletal muscle from slaughtered sheep and goats were examined macroscopically, microscopically, and ultrastructurally and subjected to DNA analysis. Results: We isolated macrocysts of S. gigantea and of S. caprafelis moulei from naturally infected sheep (Ovis aries) and goats (Capra hircus). The macrocyst wall thickness was 18.9 µm in sheep and 15.3 µm in goats, and consisted of an inner Periodic acid Schiff- (PAS) negative primary wall and an outer glycoconjugates containing i.e. PAS-positive secondary wall. The walls inner surface was compartmentalized and filled with bradyzoites. In S. gigantea the bradyzoites were approximently 12.3 x 2.6 µm in size, while in S. caprafelis moulei they were 13.9 x 4.4 µm. Ultrastructurally, both species have nearly identical morphology: cauliflower-like protrusions with numerous microtubules and often dendritic-like filaments, branching from the primary wall. The 18S rRNA gene in S. gigantea was 85.9% identical to that in S. medusiformis and 80.4% to the S. caprafelis moulei gene. The 28S rRNA gene in S. gigantea was 94.6% identical to that in S. medusiformis and 97.3% to the S. caprafelis moulei. Conclusion: This study is the first to (i) detail the ultrastructure of the macrocyst wall of S. caprafelis moulei, (ii) identify S. medusiformis in Iraqi sheep, and (iii) compare the prevalence of macroscopic Sarcocystis at different time periods within the same region. A positive finding was the reduction of macroscopic sarcocystosis occurrences (0.01% in sheep and 0.02% in goats) compared to our previous data from 1992 (4.1%: sheep, 33.6%: goats).

19.
Brain Commun ; 5(2): fcad035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895959

RESUMEN

Physiological responses to threat and stress stimuli entrain synchronized neural oscillations among cerebral networks. Network architecture and adaptation may play a critical role in achieving optimal physiological responses, while alteration can lead to mental dysfunction. We reconstructed cortical and sub-cortical source time series from high-density electroencephalography, which were then fed into community architecture analysis. Dynamic alterations were evaluated in terms of flexibility, clustering coefficient and global and local efficiency, as parameters of community allegiance. Transcranial magnetic stimulation was applied over the dorsomedial prefrontal cortex during the time window relevant for physiological threat processing and effective connectivity was computed to test the causality of network dynamics. A theta band-driven community re-organization was evident in key anatomical regions conforming the central executive, salience network and default mode networks during instructed threat processing. Increased network flexibility entrained the physiological responses to threat processing. The effective connectivity analysis showed that information flow differed between theta and alpha bands and were modulated by transcranial magnetic stimulation in salience and default mode networks during threat processing. Theta oscillations drive dynamic community network re-organization during threat processing. Nodal community switches may modulate the directionality of information flow and determine physiological responses relevant to mental health.

20.
Cell Rep ; 42(4): 112378, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37060566

RESUMEN

The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.


Asunto(s)
Linfocitos B , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Tejido Linfoide , Transducción de Señal , Bazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA