Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Bot ; : e16361, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924532

RESUMEN

PREMISE: The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS: In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS: The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS: The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.

2.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

3.
J Chem Ecol ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270732

RESUMEN

To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.

4.
Ecol Lett ; 26(9): 1559-1571, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37345539

RESUMEN

Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and ß-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical ß-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.


Asunto(s)
Salix , Salix/genética , Filogenia , Ecosistema , Plantas , Biodiversidad
5.
Ecol Lett ; 25(4): 729-739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958165

RESUMEN

Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.


Asunto(s)
Herbivoria , Árboles , Animales , Bosques , Insectos , Hojas de la Planta , Conducta Predatoria
6.
J Chem Ecol ; 48(9-10): 718-729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35972714

RESUMEN

Insect herbivores have evolved a broad spectrum of adaptations in response to the diversity of chemical defences employed by plants. Here we focus on two species of New Guinean Asota and determine how these specialist moths deal with the leaf alkaloids of their fig (Ficus) hosts. As each focal Asota species is restricted to one of three chemically distinct species of Ficus, we also test whether these specialized interactions lead to similar alkaloid profiles in both Asota species. We reared Asota caterpillars on their respective Ficus hosts in natural conditions and analyzed the alkaloid profiles of leaf, frass, caterpillar, and adult moth samples using UHPLC-MS/MS analyses. We identified 43 alkaloids in our samples. Leaf alkaloids showed various fates. Some were excreted in frass or found in caterpillars and adult moths. We also found two apparently novel indole alkaloids-likely synthesized de novo by the moths or their microbiota-in both caterpillar and adult tissue but not in leaves or frass. Overall, alkaloids unique or largely restricted to insect tissue were shared across moth species despite feeding on different hosts. This indicates that a limited number of plant compounds have a direct ecological function that is conserved among the studied species. Our results provide evidence for the importance of phytochemistry and metabolic strategies in the formation of plant-insect interactions and food webs in general. Furthermore, we provide a new potential example of insects acquiring chemicals for their benefit in an ecologically relevant insect genus.


Asunto(s)
Alcaloides , Ficus , Mariposas Nocturnas , Animales , Nueva Guinea , Espectrometría de Masas en Tándem , Larva/fisiología , Mariposas Nocturnas/fisiología , Herbivoria , Insectos , Plantas , Metaboloma
7.
J Chem Ecol ; 47(1): 99-111, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33180276

RESUMEN

Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.


Asunto(s)
Fagales/metabolismo , Herbivoria , Defensa de la Planta contra la Herbivoria , Árboles/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Fagales/química , Insectos , Análisis de Componente Principal , Tilia/química , Tilia/metabolismo , Árboles/química , Compuestos Orgánicos Volátiles/análisis
8.
Ecol Lett ; 23(10): 1499-1510, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808457

RESUMEN

In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.


Asunto(s)
Artrópodos , Arañas , Animales , Herbivoria , Conducta Predatoria , Árboles
9.
Oecologia ; 192(2): 501-514, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872269

RESUMEN

Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Bosques , América del Norte , Árboles
10.
J Chem Ecol ; 46(4): 442-454, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32314119

RESUMEN

Elevational gradients affect the production of plant secondary metabolites through changes in both biotic and abiotic conditions. Previous studies have suggested both elevational increases and decreases in host-plant chemical defences. We analysed the correlation of alkaloids and polyphenols with elevation in a community of nine Ficus species along a continuously forested elevational gradient in Papua New Guinea. We sampled 204 insect species feeding on the leaves of these hosts and correlated their community structure to the focal compounds. Additionally, we explored species richness of folivorous mammals along the gradient. When we accounted for Ficus species identity, we found a general elevational increase in flavonoids and alkaloids. Elevational trends in non-flavonol polyphenols were less pronounced or showed non-linear correlations with elevation. Polyphenols responded more strongly to changes in temperature and humidity than alkaloids. The abundance of insect herbivores decreased with elevation, while the species richness of folivorous mammals showed an elevational increase. Insect community structure was affected mainly by alkaloid concentration and diversity. Although our results show an elevational increase in several groups of metabolites, the drivers behind these trends likely differ. Flavonoids may provide figs with protection against abiotic stressors. In contrast, alkaloids affect insect herbivores and may provide protection against mammalian herbivores and pathogens. Concurrent analysis of multiple compound groups alongside ecological data is an important approach for understanding the selective landscape that shapes plant defences.


Asunto(s)
Alcaloides/metabolismo , Altitud , Ficus/química , Flavonoides/metabolismo , Cadena Alimentaria , Herbivoria , Feromonas/análisis , Animales , Biota , Insectos/fisiología , Mamíferos/fisiología , Papúa Nueva Guinea , Hojas de la Planta/química
12.
Ecol Lett ; 21(1): 83-92, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143434

RESUMEN

Escalation (macroevolutionary increase) or divergence (disparity between relatives) in trait values are two frequent outcomes of the plant-herbivore arms race. We studied the defences and caterpillars associated with 21 sympatric New Guinean figs. Herbivore generalists were concentrated on hosts with low protease and oxidative activity. The distribution of specialists correlated with phylogeny, protease and trichomes. Additionally, highly specialised Asota moths used alkaloid rich plants. The evolution of proteases was conserved, alkaloid diversity has escalated across the studied species, oxidative activity has escalated within one clade, and trichomes have diverged across the phylogeny. Herbivore specificity correlated with their response to host defences: escalating traits largely affected generalists and divergent traits specialists; but the effect of escalating traits on extreme specialists was positive. In turn, the evolution of defences in Ficus can be driven towards both escalation and divergence in individual traits, in combination providing protection against a broad spectrum of herbivores.


Asunto(s)
Ficus , Herbivoria , Insectos , Animales , Fenotipo , Filogenia
13.
Proc Natl Acad Sci U S A ; 112(2): 442-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548168

RESUMEN

Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.


Asunto(s)
Dieta , Herbivoria/fisiología , Insectos/fisiología , Animales , Biodiversidad , Ecosistema , Especificidad del Huésped , Insectos/clasificación , Lepidópteros/clasificación , Lepidópteros/fisiología , Modelos Biológicos , Filogenia
14.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118136

RESUMEN

A long-term goal in evolutionary ecology is to explain the incredible diversity of insect herbivores and patterns of host plant use in speciose groups like tropical Lepidoptera. Here, we used standardized food-web data, multigene phylogenies of both trophic levels and plant chemistry data to model interactions between Lepidoptera larvae (caterpillars) from two lineages (Geometridae and Pyraloidea) and plants in a species-rich lowland rainforest in New Guinea. Model parameters were used to make and test blind predictions for two hectares of an exhaustively sampled forest. For pyraloids, we relied on phylogeny alone and predicted 54% of species-level interactions, translating to 79% of all trophic links for individual insects, by sampling insects from only 15% of local woody plant diversity. The phylogenetic distribution of host-plant associations in polyphagous geometrids was less conserved, reducing accuracy. In a truly quantitative food web, only 40% of pair-wise interactions were described correctly in geometrids. Polyphenol oxidative activity (but not protein precipitation capacity) was important for understanding the occurrence of geometrids (but not pyraloids) across their hosts. When both foliar chemistry and plant phylogeny were included, we predicted geometrid-plant occurrence with 89% concordance. Such models help to test macroevolutionary hypotheses at the community level.


Asunto(s)
Cadena Alimentaria , Herbivoria , Mariposas Nocturnas/fisiología , Hojas de la Planta/química , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Modelos Biológicos , Mariposas Nocturnas/crecimiento & desarrollo , Nueva Guinea , Filogenia , Plantas , Bosque Lluvioso
15.
J Anim Ecol ; 86(3): 556-565, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28146344

RESUMEN

Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny.


Asunto(s)
Cadena Alimentaria , Bosques , Herbivoria , Insectos/fisiología , Magnoliopsida/clasificación , Filogenia , Animales , República Checa , Insectos/crecimiento & desarrollo , Japón , Larva/fisiología , Hojas de la Planta/fisiología
16.
Oecologia ; 180(4): 941-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26837384

RESUMEN

The functional structures of communities respond to environmental changes by both species replacement (turnover) and within-species variation (intraspecific trait variability; ITV). Evidence is lacking on the relative importance of these two components, particularly in response to both short- and long-term environmental disturbance. We hypothesized that such short- and long-term perturbations would induce changes in community functional structure primarily via ITV and turnover, respectively. To test this we applied an experimental design across long-term mown and abandoned meadows, with each plot containing a further level of short-term management treatments: mowing, grazing and abandonment. Within each plot, species composition and trait values [height, shoot biomass, and specific leaf area (SLA)] were recorded on up to five individuals per species. Positive covariations between the contribution of species turnover and ITV occurred for height and shoot biomass in response to both short- and long-term management, indicating that species turnover and intraspecific adjustments selected for similar trait values. Positive covariations also occurred for SLA, but only in response to long-term management. The contributions of turnover and ITV changed depending on both the trait and management trajectory. As expected, communities responded to short-term disturbances mostly through changes in intraspecific trait variability, particularly for height and biomass. Interestingly, for SLA they responded to long-term disturbances by both species turnover and intraspecific adjustments. These findings highlight the importance of both ITV and species turnover in adjusting grassland functional trait response to environmental perturbation, and show that the response is trait specific and affected by disturbance regime history.


Asunto(s)
Ambiente , Pradera , Biomasa , Fenotipo , Hojas de la Planta/fisiología , Tiempo
17.
J Anim Ecol ; 84(4): 1123-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25649252

RESUMEN

Plant-insect food webs tend to be dominated by interactions resulting from diffuse co-evolution between plants and multiple lineages of herbivores rather than by reciprocal co-evolution and co-cladogenesis. Plants therefore require defence strategies effective against a broad range of herbivore species. In one extreme, plants could develop a single universal defence effective against all herbivorous insects, or tailor-made strategies for each herbivore species. The evolution and ecology of plant defence has to be studied with entire insect assemblages, rather than small subsets of pairwise interactions. The present study examines whether specialists and generalists in three coexisting insect lineages, forming the leaf-chewing guild, respond uniformly to plant phylogeny, secondary metabolites, nutrient content and mechanical antiherbivore defences of their hosts, thus permitting universal plant defence strategies against specialized and generalist folivorous insects from various taxa. The extensive data on folivorous assemblages comprising three insect orders and 193 species are linked with plant phylogeny, secondary chemistry (salicylates, flavonoids and tannins), leaf morphological traits [specific leaf area (SLA) and trichome coverage], nutrient (C : N) content and growth form of eight willow (Salix) and one aspen (Populus) species growing in sympatry. Generalists responded to overall host plant chemistry and trichomes, whilst specialists responded to host plant phylogeny and secondary metabolites that are unique to willows and that are capable of being utilized as an antipredator protection. We did not find any significant impact of other plant traits, that is SLA, C : N ratio, flavonoids, tannins and growth form, on the composition of leaf-chewing communities. Our results show that the response to plant traits is differential among specialists and generalists. This finding constrains the ability of plants to develop defensive traits universally effective against herbivores and may lead to diversification of plant defensive mechanisms into several complementary syndromes, required for effective protection against generalists and specialists from multiple insect taxa comprising most leaf-chewing assemblages. These results point to the necessity of broad studies of plant-herbivore interactions, across multiple insect taxa and guilds.


Asunto(s)
Herbivoria , Insectos/fisiología , Populus/anatomía & histología , Salix/anatomía & histología , Animales , Evolución Biológica , Flavonoides/análisis , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Populus/química , Salicilatos/análisis , Salix/química , Salix/genética , Taninos/análisis
19.
Ecol Evol ; 14(2): e10973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343568

RESUMEN

Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.

20.
Ecol Evol ; 13(5): e10123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37255847

RESUMEN

Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization. In a greenhouse experiment, we exposed 149 plants of Salix fragilis (Linnaeus, 1753) to 22 herbivore species naturally associated with this host. The insects belonged to four orders (Coleoptera, Lepidoptera, Hemiptera, and Hymenoptera), three feeding guilds (external leaf-chewers, leaf-tying chewers, and sap-sucking), and included both dietary specialists and generalists. Following herbivory, we quantified induced changes in volatiles and nonvolatile leaf metabolites. We performed multivariate analyses to assess the correlation between herbivore order, feeding guild, dietary specialization, chewing damage by herbivores, and induced responses. The volatile composition was best explained by chewing damage and insect order, with Coleoptera and Lepidoptera eliciting significantly different responses. Furthermore, we recorded significant differences in elicited volatiles among some species within the two orders. Variation in nonvolatile leaf metabolites was mainly explained by the presence of insects, as plants exposed to herbivores showed significantly different metabolites from controls. Herbivore order also played a role to some extent, with beetles eliciting different responses than other herbivores. The induction of volatile and nonvolatile leaf metabolites shows different levels of specificity. The specificity in volatiles could potentially serve as an important cue to specialized predators or parasitoids, increasing the efficacy of volatiles as indirect defenses. By contrast, the induction of nonvolatile leaf metabolites was largely unaffected by herbivore identity. Most nonvolatile metabolites were downregulated, possibly indicating that plants redirected their resources from leaves in response to herbivory. Our results demonstrate how diverse responses to herbivores can contribute to the diversity of plant defensive strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA