RESUMEN
Relationships between the structures of molecules and their properties form the basis of modern chemistry and lay the foundation for structure-based drug design. Being the main two determinants of bioavailability, solubility and permeability of drugs are widely investigated experimentally and predicted from physicochemical parameters and structural descriptors. In the present study, we measure the passive diffusion permeability of a series of new fluconazole derivatives with triazole and thiazolo-pyrimidine moieties connected by different linker bridges through the PermeaPad barrier-a relatively new biomimetic lipophilic membrane that has been increasingly used in recent years. The permeability coefficients of new derivatives are shown to be dependent both on the structure of the linker fragment and on the substituent in the phenyl ring of the thiazolo-pyrimidine moiety. The impact of the compound ionization state on the permeability is revealed. Reliable correlations of the permeability with the antifungal activity and distribution coefficient are found. In addition, the solubility-diffusion approach is shown to be able to successfully predict the permeability of the studied derivatives. The obtained results can be considered another step in the development of permeability databases and design of schemes for in vitro permeability prediction.
Asunto(s)
Antifúngicos , Fluconazol , Fluconazol/farmacología , Antifúngicos/farmacología , Triazoles , Diseño de Fármacos , Permeabilidad , SolubilidadRESUMEN
The receptor for advanced glycation end products (RAGE) plays an essential role in Alzheimer's disease (AD). We previously demonstrated that a fragment (60-76) of RAGE improved the memory of olfactory bulbectomized (OBX) and Tg 5 × FAD mice - animal models of AD. The peptide analog (60-76) with protected N- and C-terminal groups was more active than the free peptide in Tg 5 × FAD mice. This study investigated proteolytic cleavage of the RAGE fragment (60-76) and its C- and N-terminally modified analog by blood serum using HPLC and mass spectrometry. The modified peptide was proteolyzed slower than the free peptide. Degrading the protected analog resulted in shortened fragments with memory-enhancing effects, whereas the free peptide yielded inactive fragments. After administering the different peptides to OBX mice, their performance in a spatial memory task revealed that the effective dose of the modified peptide was five times lower than that of the free peptide. HPLC and mass spectrometry analysis of the proteolytic products allowed us to clarify the differences in the neuroprotective activity conferred by administering these two peptides to AD animal models. The current study suggests that the modified RAGE fragment is more promising for the development of anti-AD therapy than its free analog.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Proteolisis , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Masculino , Espectrometría de Masas , RatonesRESUMEN
Drug compounds including memantine moieties are an important group of biologically active agents for different pathologies, including the Alzheimer's disease. In the present study, a series of memantine derivatives incorporating amino acid residues have been synthesized and their neuroprotective in vitro evaluation in respect of the Alzheimer's disease, involving the effects on the resistance to Aß toxicity, excitotoxicity, oxidative stress, hypoxia, and neuroinflammation has been studied. The cytotoxicities of the compounds were detected by CPE assay. TC50 and IC50 were determined using Reed and Muench method. Solubility and distribution were measured using a shake-flask method. Permeability of the compounds was studied using Franz diffusion cell and Permeapad™ barrier. These compounds displayed apparent multi-neuroprotective effects against copper-triggered Aß toxicity, glutamate-induced excitotoxicity, and oxidative and hypoxic injuries. They also showed the ability to inhibit the inflammatory cytokine release from the activated microglia and potential anti-neuroinflammatory effects. Especially, two most promising compounds H-4-F-Phe-memantine and H-Tyr-memantine demonstrated the equivalent functional bioactivities in comparison with the positive control memantine hydrochloride. Higher solubility in muriatic buffer than in phosphate buffer was detected. The distribution coefficients showed the optimal lipophilicity for compounds. The presented results propose new class of memantine derivatives as potential drug compounds. Based on the experimental results, the correlations have been obtained between the biological, physicochemical parameters and structural descriptors. The correlation equations have been proposed to predict the properties of new memantine derivatives knowing only the structural formula.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Gripe Humana/tratamiento farmacológico , Memantina/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/toxicidad , Animales , Perros , Ácido Glutámico/metabolismo , Humanos , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Memantina/análogos & derivados , Memantina/química , Fármacos Neuroprotectores/química , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/patogenicidad , Estrés Oxidativo/efectos de los fármacosRESUMEN
In the search for new co-crystal forms, many studies only consider one method of co-crystallisation which may lead to incorrect results. In this work, we demonstrate the efficiency of applying multiple experimental and virtual screening methods for a more comprehensive search for co-crystals of acetazolamide. A new co-crystal of acetazolamide with 4-aminobenzoic acid ([ACZ + PABA] (1 : 1)) was discovered, although previously, it had been found in the blind spot of the liquid-assisted grinding (LAG) screening method. The new co-crystal was investigated by different analytical techniques, including the powder and single crystal X-ray diffraction, differential scanning calorimetry, dissolution and solubility methods. The specific features of the mechanochemical formation process for [ACZ + PABA] (1 : 1) were studied. It was found that the appearance of the blind spot of the LAG screening method can be caused by a number of reasons; among those are the high sensitivity to the solvent choice and the low rate of the reagent conversion into the reaction product. A comparison of the ACZ co-crystals with 4-aminobenzoic and 4-hydroxybenzoic acids revealed their close resemblance in terms of the packing energy gain and the driving force of co-crystallization. Therefore, the experimental problems in the formation of the [ACZ + PABA] (1 : 1) co-crystal were associated with a number of kinetic reasons, e.g. the high energy barrier of the nucleation process and the low growth rate of the co-crystal. Using the co-crystal screening of acetazolamide as an example, the effectiveness of five different virtual methods for predicting co-crystal formation was assessed. In order to carry out the virtual screening based on the formation thermodynamics of a hypothetical co-crystal, for the first time ever we studied the ACZ sublimation process. Four out of the five virtual screening methods confirm the formation of the new [ACZ + PABA] (1 : 1) co-crystal.
RESUMEN
The establishment of a proangiogenic phenotype and epithelial-to-mesenchymal transition (EMT) are considered as critical events that promote the induction of invasive growth in epithelial tumors, and stimulation of lymphangiogenesis is believed to confer the capacity for early dissemination to cancer cells. Recent research has revealed substantial interdependence between these processes at the molecular level as they rely on common signaling networks. Of great interest are the molecular mechanisms of (lymph-)angiogenesis and EMT associated with the earliest stages of transition from intraepithelial development to invasive growth, as they could provide the source of potentially valuable tools for targeting tumor metastasis. However, in the case of early-stage cervical cancer, the players of (lymph-)angiogenesis and EMT processes still remain substantially uncharacterized. In this study, we used RNA sequencing to compare transcriptomes of HPV(+) preinvasive neoplastic lesions and early-stage invasive carcinoma of the cervix and to identify (lymph-)angiogenesis- and EMT-related genes and pathways that may underlie early acquisition of invasive phenotype and metastatic properties by cervical cancer cells. Second, we applied flow cytometric analysis to evaluate the expression of three key lymphangiogenesis/EMT markers (VEGFR3, MET, and SLUG) in epithelial cells derived from enzymatically treated tissue specimens. Overall, among 201 differentially expressed genes, a considerable number of (lymph-)angiogenesis and EMT regulatory factors were identified, including genes encoding cytokines, growth factor receptors, transcription factors, and adhesion molecules. Pathway analysis confirmed enrichment for angiogenesis, epithelial differentiation, and cell guidance pathways at transition from intraepithelial neoplasia to invasive carcinoma and suggested immune-regulatory/inflammatory pathways to be implicated in initiation of invasive growth of cervical cancer. Flow cytometry showed cell phenotype-specific expression pattern for VEGFR3, MET, and SLUG and revealed correlation with the amount of tumor-infiltrating lymphocytes at the early stages of cervical cancer progression. Taken together, these results extend our understanding of driving forces of angiogenesis and metastasis in HPV-associated cervical cancer and may be useful for developing new treatments.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Transición Epitelial-Mesenquimal/genética , Linfangiogénesis/genética , Neovascularización Patológica/genética , Displasia del Cuello del Útero/genética , Neoplasias del Cuello Uterino/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Adhesión Celular/genética , Movimiento Celular/genética , Plasticidad de la Célula/genética , Detección Precoz del Cáncer/métodos , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neovascularización Patológica/diagnóstico , Neovascularización Patológica/metabolismo , RNA-Seq , Transducción de Señal/genética , Neoplasias del Cuello Uterino/irrigación sanguínea , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/irrigación sanguínea , Displasia del Cuello del Útero/diagnóstico , Displasia del Cuello del Útero/patologíaRESUMEN
cFLIP, an inhibitor of apoptosis, is a crucial regulator of cellular death by apoptosis and necroptosis; its importance in development is exemplified by the embryonic lethality in cFLIP-deficient animals. A homolog of caspase 8 (CASP8), cFLIP exists in two main isoforms: cFLIPL (long) and cFLIPR (short). Although both splice variants regulate death receptor (DR)-induced apoptosis by CASP8, the specific role of each isoform is poorly understood. Here, we report a previously unidentified model of resistance to Fas receptor-mediated liver failure in the wild-derived MSM strain, compared with susceptibility in C57BL/6 (B6) mice. Linkage analysis in F2 intercross (B6 x MSM) progeny identified several MSM loci controlling resistance to Fas-mediated death, including the caspase 8- and FADD-like apoptosis regulator (Cflar) locus encoding cFLIP. Furthermore, we identified a 21-bp insertion in the 3' UTR of the fifth exon of Cflar in MSM that influences differential splicing of cFLIP mRNA. Intriguingly, we observed that MSM liver cells predominantly express the FLIPL variant, in contrast to B6 liver cells, which have higher levels of cFLIPR. In keeping with this finding, genome-wide RNA sequencing revealed a relative abundance of FLIPL transcripts in MSM hepatocytes whereas B6 liver cells had significantly more FLIPR mRNA. Importantly, we show that, in the MSM liver, CASP8 is present exclusively as its cleaved p43 product, bound to cFLIPL. Because of partial enzymatic activity of the heterodimer, it might prevent necroptosis. On the other hand, it prevents cleavage of CASP8 to p10/20 necessary for cleavage of caspase 3 and, thus, apoptosis induction. Therefore, MSM hepatocytes are predisposed for protection from DR-mediated cell death.
Asunto(s)
Empalme Alternativo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Receptor fas/metabolismo , Empalme Alternativo/genética , Animales , Anticuerpos , Apoptosis , Emparejamiento Base/genética , Secuencia de Bases , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/metabolismo , Susceptibilidad a Enfermedades , Proteína Ligando Fas/metabolismo , Ligamiento Genético , Sitios Genéticos , Genoma , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN , Transducción de SeñalRESUMEN
With the stimulator of IFN genes (STING) C terminus being extensively studied, the role of the N-terminal domain (NTD) of STING remains an important subject of investigation. In this article, we identify novel mutations in NTD of Sting of the MOLF strain in response to HSV and Listeria monocytogenes both in vitro and in vivo. These mutations are responsible for low levels of IFN-ß caused by failure of MOLF STING to translocate from the endoplasmic reticulum. These data provide evidence that the NTD of STING affects DNA responses via control of trafficking. They also show that the genetic diversity of wild-derived mice resembles the diversity observed in humans. Several human alleles of STING confer attenuated IFN-I production similar to what we observe with the MOLF Sting allele, a crucial functional difference not apparent in classical inbred mice. Thus, understanding the functional significance of polymorphisms in MOLF STING can provide basic mechanistic insights relevant to humans.
Asunto(s)
Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Alelos , Animales , ADN/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Microscopía Confocal , Mutación , Transporte de Proteínas/fisiologíaRESUMEN
A number of new sulfonamide compounds with adamantane and memantine fragments were synthesized and characterized. Thermodynamic functions of sublimation processes have been determined on the basis of experimental values of saturated vapor pressures measured by the transpiration method in a wide temperature range. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the considered substances were studied using the DSC method. Correlation equations linking the thermodynamic characteristics of sublimation with melting points and packing densities of crystals have been proposed.
RESUMEN
In this study, dissolution behaviour of 1,2,4-thiadiazole derivative (1-[5-(3-chloro-phenylamino)-1,2,4-thiadiazol-3-yl]-propan-2-ol) displaying an anti-Alzheimer activity was examined in biorelevant media such as Simulated Gastric Fluid (SGF, pH 1.2), Fasted State Simulated Gastric Fluid (FaSSGF, pH 1.6) and Fasted State Simulated Intestinal Fluid (FaSSIF, pH 6.5). It was found that solubility and dissolution rate of 1,2,4-thiadiazole derivative under consideration are not strongly dependent on pH, whereas these parameters are significantly affected by the buffer composition. Dissolution was found to be more effective in buffers composed of the surfactant micelles. It was demonstrated that considerable increase in solubility and dissolution rate in SGF is achieved through the interaction of 1,2,4-thiadiazole derivative with the micelles of sodium dodecyl sulfate. On the contrary, CMC of sodium taurochalate was shifted in the presence of 1,2,4-thiadiazole derivative, therefore, dissolution process is not so efficient in FaSSIF. Interactions occurring between 1,2,4-thiadiazole derivative and the components of biorelevant media were investigated in detail by means of UV/VIS spectroscopy, 1 H-NMR and phase solubility methods.
Asunto(s)
Enfermedad de Alzheimer/prevención & control , Diseño de Fármacos , Tiadiazoles/farmacología , Micelas , Estructura Molecular , Dodecil Sulfato de Sodio/química , Solubilidad , Ácido Taurocólico/química , Tiadiazoles/síntesis química , Tiadiazoles/químicaRESUMEN
In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.
Asunto(s)
Permeabilidad de la Membrana Celular , Membranas Artificiales , Farmacocinética , Fosfolípidos/química , Solventes/química , Química Farmacéutica , Óxido de Deuterio/química , Difusión , Concentración de Iones de Hidrógeno , Modelos QuímicosRESUMEN
Recognition of microbial components is critical for activation of TLRs, subsequent innate immune signaling, and directing adaptive immune responses. The DNA sensor TLR9 traffics from the endoplasmic reticulum to endolysosomal compartments where it is cleaved by resident proteases to generate a competent receptor. Activation of TLR9 by CpG-motif containing oligodeoxynucleotides (CpG ODNs) is preceded by agonist endocytosis and delivery into the endolysosomes. The events that dictate this process remain largely unknown; furthermore, it is unclear whether the receptors involved in mediating uptake of exogenous DNA are conserved for both naturally derived pathogenic DNA and synthetic ODNs. In this study, we report that peritoneal macrophages from a wild-derived inbred mouse strain, MOLF/Ei, are hyporesponsive to CpG ODN but are fully responsive to bacterial DNA, thus implying that microbial recognition is not fully recapitulated by a synthetic analog. To identify the gene responsible for the CpG ODN defect, we have performed genome-wide linkage analysis. Using N2 backcross mice, we mapped the trait with high resolution to a single locus containing Mrc1 as the gene conferring the trait. We show that mannose receptor 1 (MRC1; CD206) is involved in CpG ODN uptake and trafficking in wild-derived MOLF/Ei peritoneal macrophages. Furthermore, we show that other strains of wild-derived mice also require MRC1 for CpG-induced cytokine responses. These findings reveal novel functions for MRC1 and demonstrate that wild-derived mice are important and indispensable model for understanding naturally occurring regulators of inflammatory responses in innate immune pathways.
Asunto(s)
Endosomas/metabolismo , Macrófagos Peritoneales/inmunología , Glicoproteínas de Membrana/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Receptores de Superficie Celular/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Células Cultivadas , Islas de CpG/genética , ADN Bacteriano/inmunología , Endocitosis , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligodesoxirribonucleótidos/genética , Transporte de Proteínas , Sitios de Carácter Cuantitativo , Receptores Inmunológicos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunologíaRESUMEN
The present study reports the effects of two pharmaceutical excipients of differing natures-non-ionic surfactant pluronic F127 (F127) and anionic sulfobutylether-ß-cyclodextrin (SBE-ß-CD)-on the permeation of the model compound, carbamazepine (CBZ). The permeability coefficients of CBZ at three concentrations of the excipients were measured through two different artificial barriers: hydrophilic cellulose membrane (RC) and lipophilic polydimethylsiloxane-polycarbonate membrane (PDS). The equilibrium solubility of CBZ in F127 and SBE-ß-CD solutions was determined. The micellization, complexation, and aggregation tendencies were investigated. Systemically increasing the solubility and the reduction of permeation upon the excipients' concentration growth was revealed. The quantitative evaluation of the permeability tendencies was carried out using a Pratio parameter, a quasi-equilibrium mathematical mass transport model, and a correction of permeability coefficients for the free drug concentration ("true" permeability values). The results revealed the mutual influence of the excipient properties and the membrane nature on the permeability variations.
RESUMEN
Riluzole (RLZ), a sodium channel-blocking benzothiazole anticonvulsant BCS class II drug, is very slightly soluble in aqueous medium. To improve aqueous solubility and modulate dissolution rate and membrane permeability, complex formation of RLZ with two cyclodextrin, α-cyclodextrin (α-CD) and sulfobutylether-ß-cyclodextrin (SBE-ß-CD), was studied. The stability constants demonstrated a greater affinity of SBE-ß-CD towards RLZ compared to α-CD. A solubility growth of 1.7-fold and 3.7-fold with α-CD and SBE-ß-CD, respectively, was detected in the solutions of 1% cyclodextrins and accompanied by the permeability reduction. For 1% CD solutions, several biopolymers (1% w/v) were tested for the membrane permeability under static conditions. The synergistic positive effect of α-CD and polymer on the solubility accompanied by unchanged permeability was revealed in RLZ/α-CD/PG, RLZ/α-CD/PEG400, and RLZ/α-CD/PEG1000 systems. Solid RLZ/CD complexes were prepared. Dynamic dissolution/permeation experiments for the solid samples disclosed the characteristic features of the release processes and permeation rate through different artificial membranes. The maximal permeation rate was determined across the hydrophilic semi-permeable cellulose membrane followed by the lipophilic PermeaPad barrier (model of intestinal and buccal absorption) and polydimethylsiloxane-polycarbonate membrane (simulating transdermal delivery way). Different mode of the permeation between the membranes was estimated and discussed.
RESUMEN
This study describes the influence of pluronic F-127 (F-127) and ethanol (EtOH) on the solubility of umifenovir (UMF) in buffer solutions of pH 2.0 and pH 7.4, and its permeability through cellulose membranes. A 44.4-fold greater UMF solubility in acidic medium as compared to an alkaline one was estimated at 310.15 K. The concentration of UMF in the saturated solution was enhanced by the interaction with F-127 micelles. The combined positive effect of EtOH and F-127 on the solubility was estimated. The aggregation number of F-127 micelles in the presence of 10% and 20% ethanol appeared to be reduced by 2.1-fold and 4.1-fold, respectively, as compared to buffer pH 7.4. The presence of ethanol in buffer pH 7.4 solution provided better solvent conditions but inhibited the formation of F-127 micelles. The impact of UMF on the aggregation number of F-127 was not pronounced and was expressed only by a slight increase of 1 and 3 units in 10% and 20% EtOH, respectively. According to the values of zeta potential, addition of EtOH reduced the stability of the system. The permeation of UMF in buffer pH 7.4 measured through the cellulose membrane MWCO 12-14 kDa was increased 1.4-fold by 10% EtOH. An increase in EtOH content to 20% reduced this effect to 1.2-fold. Decreasing effect of 1.5% F-127 on the permeability was inhibited by using 10% EtOH. The solution containing 1.5% F-127 and 10% EtOH was shown to be an advantageous system for UMF in view of the solubility-permeability balance. The authors suppose the findings of the study to be useful for the design of pharmaceutical formulations based on UMF antiviral drugs.
RESUMEN
Cyclodextrin-based delivery systems have been intensively used to improve the bioavailability of drugs through the modification of their pharmaceutically relevant properties, such as solubility, distribution and membrane permeation. The present work aimed to disclose the influence of HP-ß-CD and SBE-ß-CD on the distribution and permeability of nortriptyline hydrochloride (NTTâ¢HCl), a tricyclic antidepressant drug. To this end, the distribution coefficients in the 1-octanol/buffer and n-hexane/buffer model systems and the coefficients of permeability through the cellulose membrane and lipophilic PermeaPad barrier were determined at several cyclodextrin concentrations. The results demonstrated a dramatic decrease in both the distribution and the permeability coefficients as the cyclodextrin concentration rose, with the decrease being more pronounced in SBE-ß-CD due to the charge-charge attraction and electrostatic interactions between NTT and SBE-ß-CD. It is these interactions that were shown to be responsible for the greater value of the constant of NTT's association with SBE-ß-CD than that with HP-ß-CD. The findings of this study revealed similar trends in the 1-octanol/buffer 6.8 pH distribution and permeability through the PermeaPad barrier in the presence of CDs. These results were attributed to the determinative role of the distribution coefficient (serving as a descriptor) in permeation through the PermeaPad barrier modeling the lipophilic nature of biological barriers.
RESUMEN
The main aims of the study were to disclose the influence of the structure on the solubility, distribution and permeability of the parent substances, iproniazid (IPN), isoniazid (INZ) and isonicotinamide (iNCT), at 310.2 K and to evaluate how the presence of cyclodextrins (2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and methylated ß-cyclodextrin (M-ß-CD)) affects the distribution behavior and diffusion properties of a model pyridinecarboxamide derivative, iproniazid (IPN). The following order of decreasing the distribution and permeability coefficients was estimated: IPN > INZ > iNAM. A slight reduction of the distribution coefficients in the 1-octanol/buffer pH 7.4 and n-hexane/buffer pH 7.4 systems (more pronounced in the first system) was revealed. The extremely weak IPN/cyclodextrins complexes were estimated from the distribution experiments: KC(IPN/HP-ß-CD) > KC(IPN/M-ß-CD). The permeability coefficients of IPN through the lipophilic membrane-the PermeaPad barrier-were also measured with and without cyclodextrins in buffer solution. Permeability of iproniazid was increased in the presence of M-ß-CD and reduced by HP-ß-CD.
RESUMEN
In the original publication [...].
RESUMEN
Background: Molecular diversity of virus-associated cervical cancer remains a relatively underexplored issue, and interrelations of immunologic and angiogenic features during the establishment of a particular landscape of the cervical cancer microenvironment are not well-characterized, especially for its earliest clinical stages, although this may provide insight into the mechanisms behind the differences in tumor aggressiveness, treatment responsiveness and prognosis. In this research, we were aimed at identifying transcriptomic landscapes of early-stage cervical carcinoma that differ substantially in their immune-related characteristics, patterns of signaling pathways and composition of the microenvironment in comparison with immediate precursor (intraepithelial) lesions. Methods: We performed the Illumina platform-based RNA sequencing using a panel of fresh tissue samples that included human papillomavirus-positive cervical intraepithelial neoplastic lesions (CIN), invasive squamous carcinoma of the cervix of FIGO IA1-IIB stages, and morphologically normal epithelium. The derived transcriptomic profiles were bioinformatically analyzed and compared by patterns of signaling pathway activation, distribution of tumor-infiltrating cell populations, and genomic regions involved. Result: According to hierarchical cluster analysis of the whole-transcriptome profiles, tissue samples were distributed between three groups, or gene expression patterns (the one comprising most pre-cancer cases and the other two encompassing mostly early-stage invasive cancer cases). Differentially expressed genes were retrieved in each intergroup pairwise comparison followed by Gene Ontology analysis. Gene set enrichment analysis of the two groups of tumor samples in comparison with the CIN group identified substantial differences in immunological and angiogenic properties between tumorous groups suggesting the development of different molecular phenotypes. Cell composition analysis confirmed the diverse changes in the abundancies of immune and non-immune populations and, accordingly, different impacts of the immune and stromal compartments on the tumor microenvironment in these two groups of tumors compared to CIN. Positional gene expression analysis demonstrated that the identified transcriptomic differences were linked to different chromosomal regions and co-localized with particular gene families implicated in immune regulation, inflammation, cell differentiation, and tumor invasion. Conclusions: Overall, detection of different transcriptomic patterns of invasive cervical carcinoma at its earliest stages supports the diverse impacts of immune response- and angiogenesis-related mechanisms on the onset of tumor invasion and progression. This may provide new options for broadening the applicability and increasing the efficiency of target anti-angiogenic and immune-based therapy of virus-associated cervical carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Perfilación de la Expresión Génica , Transcriptoma , Carcinoma de Células Escamosas/genética , Inmunidad , Microambiente Tumoral/genéticaRESUMEN
The effect of long-term high-temperature annealing on the phase composition, local crystal structure, and oxygen-ion conductivity of SOFC membranes based on zirconium dioxide solid solutions was studied. Crystals with the composition of (ZrO2)0.99-x(Sc2O3)x(R2O3)0.01 (where x = 0.08-0.1; R-Yb, Y, Tb, Gd) were obtained by the method of directed melt crystallization in a cold crucible. The crystals were annealed in air at a temperature of 1000 °C for 400 h. The phase analysis of the crystals before and after annealing was studied by X-ray diffractometry and Raman spectroscopy. The study of the ionic conductivity of the crystals was carried out by the method of impedance spectroscopy in the temperature range 400-900 °C. It has been shown that when various rare earth cations (Yb, Y, Tb, and Gd) are used, the maximum conductivity is observed for the compositions (ZrO2)0.91(Sc2O3)0.08(Yb2O3)0.01, (ZrO2)0.89(Sc2O3)0.1(Y2O3)0.01, (ZrO2)0.90(Sc2O3)0.09(Tb2O3)0.01, and (ZrO2)0.89(Sc2O3)0.1(Gd2O3)0.01. At the same time, these crystals have a highly symmetrical pseudocubic structure, which is retained even after crystal annealing. At comparable concentrations of Sc2O3, the conductivity of crystals decreases with an increase in the ionic radius of the rare earth cation. The high-temperature degradation of the conductivity is also discussed depending on the type of rare earth oxide and the concentration of scandium oxide.
RESUMEN
Novel 1,2,4-thiadiazole derivatives as potent neuroprotectors were synthesized and identified. Their ability to inhibit the glutamate stimulated Ca uptake was measured. Permeation experiments on the phospholipid membranes were conducted, and the apparent permeability coefficients were obtained. The partition coefficients in n-octanol/buffer (pH 7.4) and n-hexane/buffer (pH 7.4) immiscible phases (as model systems for characterizing gastrointestinal tract membranes and BBB) were determined. A classification of the studied compounds from the standpoint of "permeability-activity" properties was proposed.