Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
2.
Cell Mol Life Sci ; 80(5): 134, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099206

RESUMEN

Mitochondrial dysfunction, causing increased reactive oxygen species (ROS) production, is a molecular feature of heart failure (HF). A defective antioxidant response and mitophagic flux were reported in circulating leucocytes of patients with chronic HF and reduced ejection fraction (HFrEF). Atrial natriuretic peptide (ANP) exerts many cardiac beneficial effects, including the ability to protect cardiomyocytes by promoting autophagy. We tested the impact of ANP on autophagy/mitophagy, altered mitochondrial structure and function and increased oxidative stress in HFrEF patients by both ex vivo and in vivo approaches. The ex vivo study included thirteen HFrEF patients whose peripheral blood mononuclear cells (PBMCs) were isolated and treated with αANP (10-11 M) for 4 h. The in vivo study included six HFrEF patients who received sacubitril/valsartan for two months. PBMCs were characterized before and after treatment. Both approaches analyzed mitochondrial structure and functionality. We found that levels of αANP increased upon sacubitril/valsartan, whereas levels of NT-proBNP decreased. Both the ex vivo direct exposure to αANP and the higher αANP level upon in vivo treatment with sacubitril/valsartan caused: (i) improvement of mitochondrial membrane potential; (ii) stimulation of the autophagic process; (iii) significant reduction of mitochondrial mass-index of mitophagy stimulation-and upregulation of mitophagy-related genes; (iv) reduction of mitochondrial damage with increased inner mitochondrial membrane (IMM)/outer mitochondrial membrane (OMM) index and reduced ROS generation. Herein we demonstrate that αANP stimulates both autophagy and mitophagy responses, counteracts mitochondrial dysfunction, and damages ultimately reducing mitochondrial oxidative stress generation in PBMCs from chronic HF patients. These properties were confirmed upon sacubitril/valsartan administration, a pivotal drug in HFrEF treatment.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Factor Natriurético Atrial , Tetrazoles/farmacología , Tetrazoles/uso terapéutico , Mitofagia , Leucocitos Mononucleares , Especies Reactivas de Oxígeno , Volumen Sistólico , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Valsartán/farmacología , Valsartán/uso terapéutico , Mitocondrias
3.
Cell Mol Life Sci ; 80(9): 245, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566283

RESUMEN

Heart failure is a major side effect of doxorubicin (DOX) treatment in patients with cancer. However, the mechanisms underlying the development of DOX-induced heart failure need to be addressed. This study aims to test whether the serine/threonine kinase MST1, a major Hippo pathway component, contributes to the development of DOX-induced myocardial injury. C57BL/6J WT mice and mice with cardiomyocyte-specific dominant-negative MST1 (kinase-dead) overexpression received three weekly injections of DOX, reaching a final cumulative dose of 18 mg/kg. Echocardiographic, histological and biochemical analyses were performed six weeks after the first DOX administration. The effects of MST1 inhibition on DOX-induced cardiomyocyte injury were also tested in vitro. MST1 signaling was significantly activated in cardiomyocytes in response to DOX treatment in vitro and in vivo. Wild-type (WT) mice treated with DOX developed cardiac dysfunction and mitochondrial abnormalities. However, these detrimental effects were abolished in mice with cardiomyocyte-specific overexpression of dominant-negative MST1 (DN-MST1) or treated with XMU-MP-1, a specific MST1 inhibitor, indicating that MST1 inhibition attenuates DOX-induced cardiac dysfunction. DOX treatment led to a significant downregulation of cardiac levels of SIRT3, a deacetylase involved in mitochondrial protection, in WT mice, which was rescued by MST1 inhibition. Pharmacological inhibition of SIRT3 blunted the protective effects of MST1 inhibition, indicating that SIRT3 downregulation mediates the cytotoxic effects of MST1 activation in response to DOX treatment. Finally, we found a significant upregulation of MST1 and downregulation of SIRT3 levels in human myocardial tissue of cancer patients treated with DOX. In summary, MST1 contributes to DOX-induced cardiomyopathy through SIRT3 downregulation.


Asunto(s)
Cardiomiopatías , Cardiopatías , Insuficiencia Cardíaca , Sirtuina 3 , Humanos , Ratones , Animales , Sirtuina 3/genética , Regulación hacia Abajo , Ratones Endogámicos C57BL , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Doxorrubicina/farmacología , Cardiopatías/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Apoptosis
4.
Eur Heart J ; 44(8): 643-655, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36582126

RESUMEN

Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Humanos , Corazón/fisiología , Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos/metabolismo
5.
Eur Heart J ; 44(13): 1112-1123, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477861

RESUMEN

Chronic kidney disease (CKD) is projected to become a leading global cause of death by 2040, and its early detection is critical for effective and timely management. The current definition of CKD identifies only advanced stages, when kidney injury has already destroyed >50% of functioning kidney mass as reflected by an estimated glomerular filtration rate <60 mL/min/1.73 m2 or a urinary albumin/creatinine ratio >six-fold higher than physiological levels (i.e. > 30 mg/g). An elevated urinary albumin-excretion rate is a known early predictor of future cardiovascular events. There is thus a 'blind spot' in the detection of CKD, when kidney injury is present but is undetectable by current diagnostic criteria, and no intervention is made before renal and cardiovascular damage occurs. The present review discusses the CKD 'blind spot' concept and how it may facilitate a holistic approach to CKD and cardiovascular disease prevention and implement the call for albuminuria screening implicit in current guidelines. Cardiorenal risk associated with albuminuria in the high-normal range, novel genetic and biochemical markers of elevated cardiorenal risk, and the role of heart and kidney protective drugs evaluated in recent clinical trials are also discussed. As albuminuria is a major risk factor for cardiovascular and renal disease, starting from levels not yet considered in the definition of CKD, the implementation of opportunistic or systematic albuminuria screening and therapy, possibly complemented with novel early biomarkers, has the potential to improve cardiorenal outcomes and mitigate the dismal 2040 projections for CKD and related cardiovascular burden.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Humanos , Albuminuria/diagnóstico , Albuminuria/etiología , Albuminuria/orina , Riñón , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/prevención & control , Tasa de Filtración Glomerular , Biomarcadores/orina , Albúminas
6.
Eur Heart J ; 44(15): 1313-1330, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36790101

RESUMEN

Since the publication of the 2018 European Society of Cardiology/European Society of Hypertension (ESC/ESH) Guidelines for the Management of Arterial Hypertension, several high-quality studies, including randomised, sham-controlled trials on catheter-based renal denervation (RDN) were published, confirming both the blood pressure (BP)-lowering efficacy and safety of radiofrequency and ultrasound RDN in a broad range of patients with hypertension, including resistant hypertension. A clinical consensus document by the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) on RDN in the management of hypertension was considered necessary to inform clinical practice. This expert group proposes that RDN is an adjunct treatment option in uncontrolled resistant hypertension, confirmed by ambulatory BP measurements, despite best efforts at lifestyle and pharmacological interventions. RDN may also be used in patients who are unable to tolerate antihypertensive medications in the long term. A shared decision-making process is a key feature and preferably includes a patient who is well informed on the benefits and limitations of the procedure. The decision-making process should take (i) the patient's global cardiovascular (CV) risk and/or (ii) the presence of hypertension-mediated organ damage or CV complications into account. Multidisciplinary hypertension teams involving hypertension experts and interventionalists evaluate the indication and facilitate the RDN procedure. Interventionalists require expertise in renal interventions and specific training in RDN procedures. Centres performing these procedures require the skills and resources to deal with potential complications. Future research is needed to address open questions and investigate the impact of BP-lowering with RDN on clinical outcomes and potential clinical indications beyond hypertension.


Asunto(s)
Hipertensión , Arteria Renal , Humanos , Adulto , Hipertensión/cirugía , Hipertensión/tratamiento farmacológico , Riñón/irrigación sanguínea , Presión Sanguínea , Antihipertensivos/uso terapéutico , Antihipertensivos/farmacología , Desnervación/métodos , Resultado del Tratamiento , Simpatectomía/métodos
7.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473732

RESUMEN

Different multifactorial pathophysiological processes are involved in the development of heart failure (HF), including neurohormonal dysfunction, the hypertrophy of cardiomyocytes, interstitial fibrosis, microvascular endothelial inflammation, pro-thrombotic states, oxidative stress, decreased nitric oxide (NO) bioavailability, energetic dysfunction, epicardial coronary artery lesions, coronary microvascular rarefaction and, finally, cardiac remodeling. While different pharmacological strategies have shown significant cardiovascular benefits in HF with reduced ejection fraction (HFrEF), there is a residual unmet need to fill the gap in terms of knowledge of mechanisms and efficacy in the outcomes of neurohormonal agents in HF with preserved ejection fraction (HFpEF). Recently, type-2 sodium-glucose transporter inhibitors (SGLT2i) have been shown to contribute to a significant reduction in the composite outcome of HF hospitalizations and cardiovascular mortality across the entire spectrum of ejection fraction. Moreover, glucagon-like peptide-1 receptor agonists (GLP1-RA) have demonstrated significant benefits in patients with high cardiovascular risk, excess body weight or obesity and HF, in particular HFpEF. In this review, we will discuss the biological pathways potentially involved in the action of SGLT2i and GLP1-RA, which may explain their effective roles in the treatment of HF, as well as the potential implications of the use of these agents, also in combination therapies with neurohormonal agents, in the clinical practice.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Agonistas Receptor de Péptidos Similares al Glucagón , Volumen Sistólico , Miocitos Cardíacos , Proteínas Facilitadoras del Transporte de la Glucosa , Sodio
8.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473911

RESUMEN

Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Enfermedades Mitocondriales , Humanos , Mitocondrias Cardíacas/metabolismo , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Enfermedades Mitocondriales/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473748

RESUMEN

In recent years, immune checkpoint inhibitors have significantly changed the field of oncology, emerging as first-line treatment, either alone or in combination with other regimens, for numerous malignancies, improving overall survival and progression-free survival in these patients. However, immune checkpoint inhibitors might also cause severe or fatal immune-related adverse events, including adverse cardiovascular events. Initially, myocarditis was recognized as the main immune checkpoint inhibitor-related cardiac event, but our knowledge of other potential immune-related cardiovascular adverse events continues to broaden. Recently, preclinical and clinical data seem to support an association between immune checkpoint inhibitors and accelerated atherosclerosis as well as atherosclerotic cardiovascular events such as cardiac ischemic disease, stroke, and peripheral artery disease. In this review, by offering a comprehensive overview of the pivotal role of inflammation in atherosclerosis, we focus on the potential molecular pathways underlying the effects of immune checkpoint inhibitors on cardiovascular diseases. Moreover, we provide an overview of therapeutic strategies for cancer patients undergoing immunotherapy to prevent the development of cardiovascular diseases.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Cardiopatías , Miocarditis , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Enfermedades Cardiovasculares/etiología , Cardiotoxicidad/etiología , Neoplasias/tratamiento farmacológico , Miocarditis/etiología , Cardiopatías/etiología , Aterosclerosis/etiología , Inmunoterapia/efectos adversos
10.
Mol Med ; 29(1): 107, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558995

RESUMEN

BACKGROUND: A dysfunction of NADH dehydrogenase, the mitochondrial Complex I (CI), associated with the development of left ventricular hypertrophy (LVH) in previous experimental studies. A deficiency of Ndufc2 (subunit of CI) impairs CI activity causing severe mitochondrial dysfunction. The T allele at NDUFC2/rs11237379 variant associates with reduced gene expression and impaired mitochondrial function. The present study tested the association of both NDUFC2/rs11237379 and NDUFC2/rs641836 variants with LVH in hypertensive patients. In vitro studies explored the impact of reduced Ndufc2 expression in isolated cardiomyocytes. METHODS: Two-hundred-forty-six subjects (147 male, 59.7%), with a mean age of 59 ± 15 years, were included for the genetic association analysis. Ndufc2 silencing was performed in both H9c2 and rat primary cardiomyocytes to explore the hypertrophy development and the underlying signaling pathway. RESULTS: The TT genotype at NDUFC2/rs11237379 associated with significantly reduced gene expression. Multivariate analysis revealed that patients carrying this genotype showed significant differences for septal thickness (p = 0.07), posterior wall thickness (p = 0.008), RWT (p = 0.021), LV mass/BSA (p = 0.03), compared to subjects carrying either CC or CT genotypes. Patients carrying the A allele at NDUFC2/rs641836 showed significant differences for septal thickness (p = 0.017), posterior wall thickness (p = 0.011), LV mass (p = 0.003), LV mass/BSA (p = 0.002) and LV mass/height2.7(p = 0.010) after adjustment for covariates. In-vitro, the Ndufc2 deficiency-dependent mitochondrial dysfunction caused cardiomyocyte hypertrophy, pointing to SIRT3-AMPK-AKT-MnSOD as a major underlying signaling pathway. CONCLUSIONS: We demonstrated for the first time a significant association of NDUFC2 variants with LVH in human hypertension and highlight a key role of Ndufc2 deficiency-dependent CI mitochondrial dysfunction on increased susceptibility to cardiac hypertrophy development.


Asunto(s)
Cardiomegalia , Hipertensión , Humanos , Masculino , Ratas , Animales , Adulto , Persona de Mediana Edad , Anciano , Cardiomegalia/genética , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/complicaciones , Hipertensión/complicaciones , Hipertensión/genética , Genotipo , Transducción de Señal , Complejo I de Transporte de Electrón/genética
11.
Circ Res ; 128(7): 1062-1079, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793331

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associates with a considerable high rate of mortality and represents currently the most important concern in global health. The risk of more severe clinical manifestation of COVID-19 is higher in males and steeply raised with age but also increased by the presence of chronic comorbidities. Among the latter, early reports suggested that arterial hypertension associates with higher susceptibility to SARS-CoV-2 infection, more severe course and increased COVID-19-related deaths. Furthermore, experimental studies suggested that key pathophysiological hypertension mechanisms, such as activation of the renin-angiotensin system (RAS), may play a role in COVID-19. In fact, ACE2 (angiotensin-converting-enzyme 2) is the pivotal receptor for SARS-CoV-2 to enter host cells and provides thus a link between COVID-19 and RAS. It was thus anticipated that drugs modulating the RAS including an upregulation of ACE2 may increase the risk for infection with SARS-CoV-2 and poorer outcomes in COVID-19. Since the use of RAS-blockers, ACE inhibitors or angiotensin receptor blockers, represents the backbone of recommended antihypertensive therapy and intense debate about their use in the COVID-19 pandemic has developed. Currently, a direct role of hypertension, independent of age and other comorbidities, as a risk factor for the SARS-COV-2 infection and COVID-19 outcome, particularly death, has not been established. Similarly, both current experimental and clinical studies do not support an unfavorable effect of RAS-blockers or other classes of first line blood pressure lowering drugs in COVID-19. Here, we review available data on the role of hypertension and its management on COVID-19. Conversely, some aspects as to how the COVID-19 affects hypertension management and impacts on future developments are also briefly discussed. COVID-19 has and continues to proof the critical importance of hypertension research to address questions that are important for global health.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/metabolismo , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , COVID-19/metabolismo , Humanos , Hipertensión/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Factores de Riesgo
12.
Pharmacol Res ; 187: 106561, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410676

RESUMEN

The compromised viability and function of cardiovascular cells are rescued by small molecules of triazole derivatives (Tzs), identified as 3a and 3b, by preventing mitochondrial dysfunction. The oxidative phosphorylation improves the respiratory control rate in the presence of Tzs independently of the substrates that energize the mitochondria. The F1FO-ATPase, the main candidate in mitochondrial permeability transition pore (mPTP) formation, is the biological target of Tzs and hydrophilic F1 domain of the enzyme is depicted as the binding region of Tzs. The protective effect of Tz molecules on isolated mitochondria was corroborated by immortalized cardiomyocytes results. Indeed, mPTP opening was attenuated in response to ionomycin. Consequently, increased mitochondrial roundness and reduction of both length and interconnections between mitochondria. In in-vitro and ex-vivo models of cardiovascular pathologies (i.e., hypoxia-reoxygenation and hypertension) were used to evaluate the Tzs cardioprotective action. Key parameters of porcine aortic endothelial cells (pAECs) oxidative metabolism and cell viability were not affected by Tzs. However, in the presence of either 1 µM 3a or 0.5 µM 3b the impaired cell metabolism of pAECs injured by hypoxia-reoxygenation was restored to control respiratory profile. Moreover, endothelial cells isolated from SHRSP exposed to high-salt treatment rescued the Complex I activity and the endothelial capability to form vessel-like tubes and vascular function in presence of Tzs. As a result, the specific biochemical mechanism of Tzs to block Ca2+-activated F1FO-ATPase protected cell viability and preserved the pAECs bioenergetic metabolism upon hypoxia-reoxygenation injury. Moreover, SHRSP improved vascular dysfunction in response to a high-salt treatment.


Asunto(s)
Enfermedades Cardiovasculares , Proteínas de Transporte de Membrana Mitocondrial , Animales , Porcinos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo
13.
Nutr Metab Cardiovasc Dis ; 33(11): 2287-2293, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37580230

RESUMEN

BACKGROUND AND AIMS: Trehalose, spermidine, nicotinamide, and polyphenols are natural substances that exert pro-autophagic and antioxidant properties. Their role in blood pressure (BP) regulation and preservation of vascular function in essential hypertension is unknown. The aim of this study was to evaluate the effect of a mixture of these agents on BP level, markers of oxidative stress, autophagy, endothelial function, and vascular stiffness in outpatients with grade 1 uncomplicated essential hypertension. METHODS AND RESULTS: A single-centre, open-label, case-control, pilot study was conducted in adult outpatients (aged ≥18 years) receiving or not the mixture for two months along with the standard therapies. Both at baseline and at the end of the treatment the following clinical parameters were evaluated: brachial seated office BP level, central aortic pressure, pulse wave velocity, augmentation index (AI@75). Both at baseline and at the end of the treatment, a blood sample was drawn for the measurement of: H2O2, HBA%, levels of sNOX2-dp, Atg 5, P62, endothelin 1, and NO bioavailability. The mixture of nutraceuticals did not influence BP levels. Patients receiving the mixture showed a significant decrease of oxidative stress, stimulation of autophagy, increased NO bioavailability and no increase of the AI@75, in contrast to what observed in hypertensive patients not receiving the mixture. CONCLUSIONS: The supplementation of the trehalose, spermidine, nicotinamide, and polyphenols mixture counteracted hypertension-related arterial stiffness through mechanisms likely dependent on oxidative stress downregulation and autophagy stimulation. These natural activators of autophagy may represent favourable adjuvants for prevention of the hypertensive cardiovascular damage.

14.
Nutr Metab Cardiovasc Dis ; 33(2): 245-257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566123

RESUMEN

AIMS: Although adequate clinical management of patients with hypercholesterolemia without a history of known cardiovascular disease is essential for prevention, these subjects are often disregarded. Furthermore, the scientific literature on primary cardiovascular prevention is not as rich as that on secondary prevention; finally, physicians often lack adequate tools for the effective management of subjects in primary prevention and have to face some unsolved relevant issues. This document aims to discuss and review the evidence available on this topic and provide practical guidance. DATA SYNTHESIS: Available algorithms and risk charts represent the main tool for the assessment of cardiovascular risk in patients in primary prevention. The accuracy of such an estimate can be substantially improved considering the potential contribution of some additional risk factors (C-reactive protein, lipoprotein(a), family history of cardiovascular disease) and conditions (environmental pollution, sleep quality, socioeconomic status, educational level) whose impact on the cardiovascular risk has been better understood in recent years. The availability of non-invasive procedures to evaluate subclinical atherosclerosis may help to identify subjects needing an earlier intervention. Unveiling the presence of these conditions will improve cardiovascular risk estimation, granting a more appropriate intervention. CONCLUSIONS: The accurate assessment of cardiovascular risk in subjects in primary prevention with the use of algorithms and risk charts together with the evaluation of additional factors will allow physicians to approach each patient with personalized strategies, which should translate into an increased adherence to therapy and, as a consequence, a reduced cardiovascular risk.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipercolesterolemia , Humanos , LDL-Colesterol , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Testimonio de Experto , Hipercolesterolemia/tratamiento farmacológico , Factores de Riesgo , Prevención Primaria/métodos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
15.
Nutr Metab Cardiovasc Dis ; 33(2): 323-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642602

RESUMEN

BACKGROUND AND AIMS: Whether the association between very high HDL-cholesterol levels and cardiovascular mortality (CVM) is modulated by some facilitating factors is unclear. Aim of the study was to investigate whether the risk of CVM associated with very high HDL-cholesterol is increased in subjects with hyperuricemia. METHODS AND RESULTS: Multivariable Cox analyses were made in 18,072 participants from the multicentre URRAH study stratified by sex and HDL-cholesterol category. During a median follow-up of 11.4 years there were 1307 cases of CVM. In multivariable Cox models a J-shaped association was found in the whole population, with the highest risk being present in the high HDL-cholesterol group [>80 mg/dL, adjusted hazard ratio (HR), 1.28; 95%CI, 1.02-1.61; p = 0.031)]. However, a sex-specific analysis revealed that this association was present only in women (HR, 1.34; 95%CI, 1.02-1.77; p = 0.034) but not in men. The risk of CVM related to high HDL-cholesterol was much greater in the women with high uric acid (>0.30 mmol/L, HR 1.61; 95%CI, 1.08-2.39) than in those with low uric acid (HR, 1.17; 95%CI, 0.80-1.72, p for interaction = 0.016). In women older than 70 years with hyperuricemia the risk related to high HDL-cholesterol was 1.83 (95%CI, 1.19-2.80, p < 0.005). Inclusion of BMI in the models weakened the strength of the associations. CONCLUSION: Our data indicate that very high HDL-cholesterol levels in women are associated with CVM in a J-shaped fashion. The risk of CVM is increased by concomitant hyperuricemia suggesting that a proinflammatory/oxidative state can enhance the detrimental cardiovascular effects associated with high HDL-cholesterol.


Asunto(s)
Enfermedades Cardiovasculares , Hipercolesterolemia , Hiperlipidemias , Hiperuricemia , Masculino , Humanos , Femenino , HDL-Colesterol , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo , Hiperuricemia/epidemiología , Ácido Úrico
16.
Curr Heart Fail Rep ; 20(1): 56-62, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36696001

RESUMEN

PURPOSE OF THE REVIEW: Arterial hypertension (AH) is the most common cardiovascular (CV) risk factor in the community and in oncologic patients. It also represents the most important CV condition predisposing to anticancer treatment-related cardiotoxicity. This risk is heightened in the presence of cardiac AH-mediated organ damage (HMOD). Influence of AH and HMOD on the development of cardiotoxicity will be reviewed, with a focus on specific scenarios and implications for management of oncologic patients. RECENT FINDINGS: Not adequately controlled AH before or during anticancer treatments and/or development of AH during or after completion of such therapies have detrimental effects on the clinical course of oncologic patients, particularly if HMOD is present. As overlooking CV health can jeopardize the success of anticancer treatments, the goal for clinicians caring for the oncologic patient should include the treatment of AH and HMOD.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Humanos , Cardiotoxicidad , Insuficiencia Cardíaca/complicaciones , Hipertensión/complicaciones , Enfermedades Cardiovasculares/complicaciones
17.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982204

RESUMEN

Natriuretic peptides (NPs) are the principal expression products of the endocrine function of the heart. They exert several beneficial effects, mostly mediated through guanylate cyclase-A coupled receptors, including natriuresis, diuresis, vasorelaxation, blood volume and blood pressure reduction, and regulation of electrolyte homeostasis. As a result of their biological functions, NPs counterbalance neurohormonal dysregulation in heart failure and other cardiovascular diseases. NPs have been also validated as diagnostic and prognostic biomarkers in cardiovascular diseases such as atrial fibrillation, coronary artery disease, and valvular heart disease, as well as in the presence of left ventricular hypertrophy and severe cardiac remodeling. Serial measurements of their levels may be used to contribute to more accurate risk stratification by identifying patients who are more likely to experience death from cardiovascular causes, heart failure, and cardiac hospitalizations and to guide tailored pharmacological and non-pharmacological strategies with the aim to improve clinical outcomes. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new targeted cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors to the current management of heart failure, novel promising molecules including M-atrial natriuretic peptide (a novel atrial NP-based compound) have been tested for the treatment of human hypertension with promising results. Moreover, different therapeutic strategies based on the molecular mechanisms involved in NP regulation and function are under development for the management of heart failure, hypertension, and other cardiovascular conditions.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Hipertensión , Humanos , Péptidos Natriuréticos/metabolismo , Factor Natriurético Atrial/uso terapéutico , Factor Natriurético Atrial/metabolismo , Insuficiencia Cardíaca/metabolismo , Corazón , Péptido Natriurético Encefálico/metabolismo
18.
Heart Fail Rev ; 27(1): 271-280, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32535741

RESUMEN

A focal contraction pattern in takotsubo syndrome (TTS) is considered rare. Due to its peculiar presentation, which includes segmental left ventricular (LV) regional wall motion abnormalities (RWMA), the focal TTS pattern may be hardly differentiable from other entities, such as myocarditis or myocardial infarction. We performed a comprehensive systematic literature review researching for works in English published in Journals indexed in Embase, available online for consultation, using the following keywords (in Title and/or Abstract): ("takotsubo" OR "broken heart" OR "apical ballooning" OR "stress cardiomyopathy") AND ("focal" OR "atypical" OR "variant" OR "segments"). Thirty-three papers were retrieved: 17 case reports, 6 case series, and 10 population studies-with a total of 166 focal TTS patients. Prevalence of focal TTS ranged between 0.1% and 14% (pooled mean: 2.8%). Mean age of onset (58 years), gender distribution (80% of females), and type of triggers appeared similar to those reported in typical TTS. RWMA more frequently involved the interventricular septum and the anterolateral LV segments, with often preserved LV ejection fraction. In the majority of focal TTS reports that included adequate ECG information (n = 13), abnormalities were localized and not diffuse, always matching RWMA, and in 3 cases, reciprocal changes were observed. No in-hospital nor long-term deaths were reported. The focal TTS contraction pattern may be more prevalent than currently reported. Though possibly presenting with similar demographic background compared with typical TTS, the focal variant might be characterized by peculiar ECG modifications and better prognosis.


Asunto(s)
Cardiomiopatía de Takotsubo , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Miocardio , Volumen Sistólico , Cardiomiopatía de Takotsubo/diagnóstico , Cardiomiopatía de Takotsubo/epidemiología , Función Ventricular Izquierda
19.
Cardiology ; 147(1): 23-25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34587618

RESUMEN

The use of sodium glucose cotransporter 2 inhibitors (SGLT2i) in heart failure (HF) with reduced ejection fraction (HFrEF) has been strongly supported by the results of recent randomized clinical trials. Upon this evidence, international recommendations and consensus documents propose the inclusion of SGLT2i among the first-line classes for HFrEF management. Subsequent analyses of treatment subgroups have been performed to investigate the effects of SGLT2i in patients treated with first-line classes including sacubitril/valsartan (Sac/Val), showing a consistent reduction of cardiovascular outcomes with a good safety profile of SGLT2i in combination with the other classes. Accordingly, SGLT2i are recommended also in combination with Sac/Val. This association, however, may require caution before being translated into guideline-directed medical therapy in clinical practice, since the proportion of patients receiving Sac/Val and SGLT2i in the available studies was poorly represented. In order to support an effective and safe sequencing or a simultaneous initiation of these 2 drug classes, pragmatic and real-world clinical studies would be helpful.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Algoritmos , Aminobutiratos , Compuestos de Bifenilo/efectos adversos , Combinación de Medicamentos , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Volumen Sistólico , Valsartán/efectos adversos
20.
Nutr Metab Cardiovasc Dis ; 32(5): 1245-1252, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35282979

RESUMEN

BACKGROUND AND AIM: The URRAH (URic acid Right for heArt Health) Study has identified cut-off values of serum uric acid (SUA) predictive of total mortality at 4.7 mg/dl, and cardiovascular (CV) mortality at 5.6 mg/dl. Our aim was to validate these SUA thresholds in people with diabetes. METHODS AND RESULTS: The URRAH subpopulation of people with diabetes was studied. All-cause and CV deaths were evaluated at the end of follow-up. A total of 2570 diabetic subjects were studied. During a median follow-up of 107 months, 744 deaths occurred. In the multivariate Cox regression analyses adjusted for several confounders, subjects with SUA ≥5.6 mg/dl had higher risk of total (HR: 1.23, 95%CI: 1.04-1.47) and CV mortality (HR:1.31, 95%CI:1.03-1.66), than those with SUA <5.6 mg/dl. Increased all-cause mortality risk was shown in participants with SUA ≥4.7 mg/dl vs SUA below 4.7 mg/dl, but not statistically significant after adjustment for all confounders. CONCLUSIONS: SUA thresholds previously proposed by the URRAH study group are predictive of total and CV mortality also in people with diabetes. The threshold of 5.6 mg/dl can predict both total and CV mortality, and so is candidate to be a clinical cut-off for the definition of hyperuricemia in patients with diabetes.


Asunto(s)
Diabetes Mellitus , Hiperuricemia , Diabetes Mellitus/diagnóstico , Humanos , Hiperuricemia/diagnóstico , Factores de Riesgo , Ácido Úrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA