Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
New Phytol ; 231(2): 791-800, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932029

RESUMEN

Mycorrhizal fungi are central to the biology of land plants. However, to what extent mycorrhizal shifts - broad evolutionary transitions in root-associated fungal symbionts - are related to changes in plant trophic modes remains poorly understood. We built a comprehensive DNA dataset of Orchidaceae fungal symbionts and a dated plant molecular phylogeny to test the hypothesis that shifts in orchid trophic modes follow a stepwise pattern, from autotrophy over partial mycoheterotrophy (mixotrophy) to full mycoheterotrophy, and that these shifts are accompanied by switches in fungal symbionts. We estimate that at least 17 independent shifts from autotrophy towards full mycoheterotrophy occurred in orchids, mostly through an intermediate state of partial mycoheterotrophy. A wide range of fungal partners was inferred to occur in the roots of the common ancestor of this family, including 'rhizoctonias', ectomycorrhizal, and wood- or litter-decaying saprotrophic fungi. Phylogenetic hypothesis tests further show that associations with ectomycorrhizal or saprotrophic fungi were most likely a prerequisite for evolutionary shifts towards full mycoheterotrophy. We show that shifts in trophic mode often coincided with switches in fungal symbionts, suggesting that the loss of photosynthesis selects for different fungal communities in orchids. We conclude that changes in symbiotic associations and ecophysiological traits are tightly correlated throughout the diversification of orchids.


Asunto(s)
Micorrizas , Orchidaceae , Evolución Biológica , Filogenia , Simbiosis
2.
Glob Chang Biol ; 24(3): 925-932, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29215778

RESUMEN

Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985-2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations.


Asunto(s)
Ritmo Circadiano , Luz , Iluminación , Mariposas Nocturnas/fisiología , Animales , Conservación de los Recursos Naturales , Conducta Alimentaria , Países Bajos , Fototaxis , Dinámica Poblacional
3.
Syst Biol ; 66(2): 152-166, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616324

RESUMEN

Rapidly growing biological data-including molecular sequences and fossils-hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a "Dated Tree of Life" where all node ages are directly comparable. [Bayesian phylogenetics; data mining; divide-and-conquer methods; GenBank; multilocus multispecies coalescent; next-generation sequencing; palms; primates; tree calibration.].


Asunto(s)
Clasificación/métodos , Fósiles , Filogenia , Factores de Edad , Migración Animal , Animales , Arecaceae/clasificación , Teorema de Bayes , Primates/clasificación , Reproducibilidad de los Resultados , Tiempo
4.
Am J Bot ; 105(3): 614-622, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29603138

RESUMEN

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Asunto(s)
Difusión de la Información , Gestión de la Información , Filogenia , Plantas/genética , ADN de Plantas , Humanos , Tecnología de la Información , Análisis de Secuencia de ADN
5.
BMC Evol Biol ; 17(1): 89, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335712

RESUMEN

BACKGROUND: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. RESULTS: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. CONCLUSIONS: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.


Asunto(s)
Mimetismo Biológico , Flores/anatomía & histología , Orchidaceae/anatomía & histología , Orchidaceae/genética , Animales , Abejas/anatomía & histología , Evolución Biológica , Evolución Molecular , Flores/genética , Proteínas de Dominio MADS/genética , Orchidaceae/clasificación , Filogenia , Proteínas de Plantas/genética , Polinización
6.
Syst Biol ; 65(6): 1024-1040, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27288478

RESUMEN

The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric-conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors.


Asunto(s)
Clasificación/métodos , Lepidópteros/clasificación , Lepidópteros/genética , Filogenia , Animales , Sesgo , Código de Barras del ADN Taxonómico , ADN Mitocondrial , Genes Mitocondriales
7.
Ann Bot ; 118(5): 1043-1056, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27498812

RESUMEN

Background and Aims Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. Methods After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species. The conditions under which the genera diversified were estimated using ancestral area reconstruction and optimization of ancestral climates, and xylem-specific conductivity measurements were performed. Key Results Viburnum, characterized by scalariform vessel perforations (ancestral), diversified earlier than Sambucus, having simple perforations (derived). Ancestral climate reconstruction analyses point to cold temperate preference for Viburnum and warm temperate for Sambucus. This is reflected in the xylem-specific conductivity rates of the co-occurring species investigated, showing that Viburnum lantana has rates much lower than Sambucus nigra. Conclusions The lack of selective pressure for high conductive efficiency during early diversification of Viburnum and the potentially adaptive value of scalariform perforations in frost-prone cold temperate climates have led to retention of the ancestral vessel perforation type, while higher temperatures during early diversification of Sambucus have triggered the evolution of simple vessel perforations, allowing more efficient long-distance water transport.

8.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297900

RESUMEN

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Asunto(s)
Adaptación Biológica/fisiología , Venenos Elapídicos , Elapidae , Evolución Molecular , Genoma/fisiología , Transcriptoma/fisiología , Animales , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Glándulas Exocrinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
9.
BMC Bioinformatics ; 15: 44, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24502833

RESUMEN

BACKGROUND: Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. RESULTS: The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation' barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. CONCLUSIONS: The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is available at https://github.com/naturalis/HTS-barcode-checker.


Asunto(s)
Clasificación/métodos , Código de Barras del ADN Taxonómico/métodos , Bases de Datos de Ácidos Nucleicos , Programas Informáticos , Medicamentos Herbarios Chinos/clasificación , Especies en Peligro de Extinción/legislación & jurisprudencia , Internacionalidad , Medicina Tradicional China
10.
Syst Biol ; 61(4): 675-89, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22357728

RESUMEN

In scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input-output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML.


Asunto(s)
Evolución Biológica , Biología Computacional/normas , Lenguajes de Programación , Biodiversidad , Clasificación , Informática , Modelos Biológicos , Filogenia , Programas Informáticos
11.
Nature ; 446(7135): 507-12, 2007 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-17392779

RESUMEN

Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.


Asunto(s)
Evolución Biológica , Mamíferos/clasificación , Mamíferos/fisiología , Animales , Dinosaurios/clasificación , Dinosaurios/fisiología , Extinción Biológica , Fósiles , Especiación Genética , Historia Antigua , Mamíferos/genética , Modelos Biológicos , Filogenia , Factores de Tiempo
12.
PeerJ ; 10: e12790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35111406

RESUMEN

BACKGROUND: Soon after the Spanish conquest of the Americas, the first tomatoes were presented as curiosities to the European elite and drew the attention of sixteenth-century Italian naturalists. Despite of their scientific interest in this New World crop, most Renaissance botanists did not specify where these 'golden apples' or 'pomi d'oro' came from. The debate on the first European tomatoes and their origin is often hindered by erroneous dating, botanical misidentifications and inaccessible historical sources. The discovery of a tomato specimen in the sixteenth-century 'En Tibi herbarium' kept at Leiden, the Netherlands, triggered research on its geographical provenance and morphological comparison to other tomato specimens and illustrations from the same time period. METHODS: Recent digitization efforts greatly facilitate research on historic botanical sources. Here we provide an overview of the ten remaining sixteenth-century tomato specimens, early descriptions and 13 illustrations. Several were never published before, revealing what these tomatoes looked like, who saw them, and where they came from. We compare our historical findings with recent molecular research on the chloroplast and nuclear DNA of the 'En Tibi' specimen. RESULTS: Our survey shows that the earliest tomatoes in Europe came in a much wider variety of colors, shapes and sizes than previously thought, with both simple and fasciated flowers, round and segmented fruits. Pietro Andrea Matthioli gave the first description of a tomato in 1544, and the oldest specimens were collected by Ulisse Aldrovandi and Francesco Petrollini in c. 1551, possibly from plants grown in the Pisa botanical garden by their teacher Luca Ghini. The oldest tomato illustrations were made in Germany and Switzerland in the early 1550s, but the Flemish Rembert Dodoens published the first image in 1553. The names of early tomatoes in contemporary manuscripts suggest both a Mexican and a Peruvian origin. The 'En Tibi' specimen was collected by Petrollini around 1558 and thus is not the oldest extant tomato. Recent molecular research on the ancient nuclear and chloroplast DNA of the En Tibi specimen clearly shows that it was a fully domesticated tomato, and genetically close to three Mexican landraces and two Peruvian specimens that probably also had a Mesoamerican origin. Molecular research on the other sixteenth-century tomato specimens may reveal other patterns of genetic similarity, past selection processes, and geographic origin. Clues on the 'historic' taste and pest resistance of the sixteenth-century tomatoes will be difficult to predict from their degraded DNA, but should be rather sought in those landraces in Central and South America that are genetically close to them. The indigenous farmers growing these traditional varieties should be supported to conserve these heirloom varieties in-situ.


Asunto(s)
Solanum lycopersicum , Europa (Continente) , Italia , Frutas , Alemania
13.
Plant Methods ; 18(1): 92, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35780674

RESUMEN

BACKGROUND: Bulk segregant analysis (BSA) can help identify quantitative trait loci (QTLs), but this may result in substantial bycatch of functionally irrelevant genes. RESULTS: Here we develop a Gene Ontology-mediated approach to zoom in on specific genes located inside QTLs identified by BSA as implicated in a continuous trait. We apply this to a novel experimental system: flowering time in the giant woody Jersey kale, which we phenotyped in four bulks of flowering onset. Our inferred QTLs yielded tens of thousands of candidate genes. We reduced this by two orders of magnitude by focusing on genes annotated with terms contained within relevant subgraphs of the Gene Ontology. A pathway enrichment test then led to the circadian rhythm pathway. The genes that enriched this pathway are attested from previous research as regulating flowering time. Within that pathway, the genes CCA1, FT, and TSF were identified as having functionally significant variation compared to Arabidopsis. We validated and confirmed our ontology-mediated results through genome sequencing and homology-based SNP analysis. However, our ontology-mediated approach produced additional genes of putative importance, showing that the approach aids in exploration and discovery. CONCLUSIONS: Our method is potentially applicable to the study of other complex traits and we therefore make our workflows available as open-source code and a reusable Docker container.

14.
BMC Bioinformatics ; 12: 63, 2011 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21352572

RESUMEN

BACKGROUND: Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. RESULTS: This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. CONCLUSIONS: Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo.


Asunto(s)
Biología Computacional/métodos , Filogenia , Programas Informáticos , Sistemas de Computación
15.
BMC Evol Biol ; 10: 179, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20546608

RESUMEN

BACKGROUND: Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. RESULTS: Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. CONCLUSION: Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters.


Asunto(s)
Evolución Biológica , Charadriiformes/embriología , Fenómenos Fisiológicos de la Nutrición , Filogenia , Conducta Predatoria , Spheniscidae/embriología , Animales , Teorema de Bayes , Charadriiformes/genética , Tamaño de la Nidada , ADN Mitocondrial/genética , Funciones de Verosimilitud , Modelos Biológicos , Comportamiento de Nidificación , Análisis de Secuencia de ADN , Spheniscidae/genética
16.
Ecol Evol ; 10(8): 3647-3654, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32313624

RESUMEN

Environmental DNA (eDNA) is used for monitoring the occurrence of freshwater organisms. Various studies show a relation between the amount of eDNA detected and target organism abundance, thus providing a potential proxy for reconstructing population densities. However, environmental factors such as water temperature and microbial activity are known to affect the amount of eDNA present as well. In this study, we use controlled aquarium experiments using Gammarus pulex L. (Amphipoda) to investigate the relationship between the amount of detectable eDNA through time, pH, and levels of organic material. We found eDNA to degrade faster when organic material was added to the aquarium water, but that pH had no significant effect. We infer that eDNA contained inside cells and mitochondria is extra resilient against degradation, though this may not reflect actual presence of target species. These results indicate that, although estimation of population density might be possible using eDNA, measured eDNA concentration could, in the future, be corrected for local environmental conditions in order to ensure accurate comparisons.

17.
F1000Res ; 9: 136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308977

RESUMEN

We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional , Web Semántica , Minería de Datos , Metadatos , Reproducibilidad de los Resultados
18.
Sci Rep ; 8(1): 10698, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013185

RESUMEN

Mycorrhizal symbiosis between soil fungi and land plants is one of the most widespread and ecologically important mutualisms on earth. It has long been hypothesized that the Glomeromycotina, the mycorrhizal symbionts of the majority of plants, facilitated colonization of land by plants in the Ordovician. This view was recently challenged by the discovery of mycorrhiza-like associations with Mucoromycotina in several early diverging lineages of land plants. Utilizing a large, species-level database of plants' mycorrhiza-like associations and a Bayesian approach to state transition dynamics we here show that the recruitment of Mucoromycotina is the best supported transition from a non-mycorrhizal state. We further found that transitions between different combinations of either or both of Mucoromycotina and Glomeromycotina occur at high rates, and found similar promiscuity among combinations that include either or both of Glomeromycotina and Ascomycota with a nearly fixed association with Basidiomycota. Our results portray an evolutionary scenario of evolution of mycorrhizal symbiosis with a prominent role for Mucoromycotina in the early stages of land plant diversification.


Asunto(s)
Embryophyta/genética , Especiación Genética , Micorrizas/genética , Filogenia , Ascomicetos/genética , Basidiomycota/genética , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Conjuntos de Datos como Asunto , Embryophyta/microbiología , Glomeromycota/genética , Microbiología del Suelo , Simbiosis
19.
Life (Basel) ; 8(2)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874797

RESUMEN

The exceptional increase in molecular DNA sequence data in open repositories is mirrored by an ever-growing interest among evolutionary biologists to harvest and use those data for phylogenetic inference. Many quality issues, however, are known and the sheer amount and complexity of data available can pose considerable barriers to their usefulness. A key issue in this domain is the high frequency of sequence mislabeling encountered when searching for suitable sequences for phylogenetic analysis. These issues include, among others, the incorrect identification of sequenced species, non-standardized and ambiguous sequence annotation, and the inadvertent addition of paralogous sequences by users. Taken together, these issues likely add considerable noise, error or bias to phylogenetic inference, a risk that is likely to increase with the size of phylogenies or the molecular datasets used to generate them. Here we present a software package, phylotaR that bypasses the above issues by using instead an alignment search tool to identify orthologous sequences. Our package builds on the framework of its predecessor, PhyLoTa, by providing a modular pipeline for identifying overlapping sequence clusters using up-to-date GenBank data and providing new features, improvements and tools. We demonstrate and test our pipeline's effectiveness by presenting trees generated from phylotaR clusters for two large taxonomic clades: Palms and primates. Given the versatility of this package, we hope that it will become a standard tool for any research aiming to use GenBank data for phylogenetic analysis.

20.
J Biomed Semantics ; 7(1): 65, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842607

RESUMEN

BACKGROUND: The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. RESULTS: We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. CONCLUSIONS: The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather serve as an overarching framework based on which different application- and domain-specific ontologies, thesauri and vocabularies of phenotypes observed in flowering plants can be integrated.


Asunto(s)
Ontologías Biológicas , Fenotipo , Plantas/anatomía & histología , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA