Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Cell Res ; 427(1): 113571, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003559

RESUMEN

Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix protein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing factors. Galectin-3 co-localizes with SC35 in nuclear speckles, which represent one group of nuclear bodies that include the nucleolus, Cajal bodies and gems, paraspeckles, etc. Although they appear to have well-delineated physical boundaries, these nuclear bodies are not membrane-bound structures but represent macromolecular assemblies arising from a phenomenon called liquid-liquid phase separation. There has been much recent interest in liquid phase condensation as a newly recognized mechanism by which a cell can organize and compartmentalize subcellular structures with distinct composition. The punctate/speckled staining of galectin-3 with SC3 demonstrates their co-localization in a phase-separated body in vivo, under conditions endogenous to the cell. The purpose of the present review is to summarize the studies that document three key features of galectin-3 for its localization in liquid phase condensates: (a) an intrinsically disordered domain; (b) oligomer formation for multivalent binding; and (c) association with RNA and ribonucleoprotein complexes.


Asunto(s)
Galectina 3 , Motas Nucleares , Galectina 3/metabolismo , Nucléolo Celular , Ribonucleoproteínas/metabolismo , Arginina/metabolismo
2.
Nucleic Acids Res ; 44(13): 6391-7, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27105840

RESUMEN

In previous studies, we reported that fractionation of HeLa cell nuclear extracts on glycerol gradients revealed an endogenous ∼10S particle that contained galectin-3 and U1 snRNP and this particle was sufficient to load the galectin polypeptide onto a pre-mRNA substrate. We now document that this interaction between the galectin-3-U1 snRNP particle and the pre-mRNA results in a productive spliceosomal complex, leading to intermediates and products of the splicing reaction. Nuclear extracts were depleted of U1 snRNP with a concomitant loss of splicing activity. Splicing activity in the U1-depleted extract can be reconstituted by the galectin-3-U1 snRNP particle, isolated by immunoprecipitation of the 10S region (fractions 3-5) of the glycerol gradient with anti-galectin-3 antibodies. In contrast, parallel anti-galectin-3 immunoprecipitation of free galectin-3 molecules not in a complex with U1 snRNP (fraction 1 of the same gradient), failed to restore splicing activity. These results indicate that the galectin-3-U1 snRNP-pre-mRNA ternary complex is a functional E complex and that U1 snRNP is required to assemble galectin-3 onto an active spliceosome.


Asunto(s)
Galectina 3/genética , Precursores del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalmosomas/genética , Proteínas Sanguíneas , Extractos Celulares/genética , Núcleo Celular/genética , Sistema Libre de Células , Galectina 3/metabolismo , Galectinas , Células HeLa , Humanos , Precursores del ARN/metabolismo , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo
3.
Isr J Chem ; 55(3-4): 423-436, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27110035

RESUMEN

Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.

4.
Methods Mol Biol ; 2442: 713-726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320554

RESUMEN

Fractionation of HeLa cell nuclear extracts by glycerol gradient centrifugation separates endogenous uracil-rich small nuclear ribonucleoprotein complexes (U snRNP) into numerous particles sedimenting from 7S to greater than 60S. Complexes sedimenting at 10S contain a single U snRNP (U1 snRNP) and galectin-3. Addition of antibodies specific for galectin-3 to fractions containing these 10S complexes coprecipitates U1 snRNP, indicating that a fraction of the U1 snRNP is associated with this galectin. Galectin-3 has been shown by depletion-reconstitution studies to be an integral splicing component involved both in spliceosome assembly and splicing activity. The first step in initiation of spliceosome assembly is binding of U1 snRNP to the 5' splice site of the premessenger RNA substrate. The finding that U1 snRNP and galectin-3 are associated in splicing extracts hints that this complex affords a potential entry point for galectin-3 into the splicing pathway. Addition of U1 snRNP-galectin-3 complexes immunoselected from the 10S region of glycerol gradients to a U1-depleted nuclear extract initiates splicing activity with the formation of splicing intermediates and mature mRNA. This chapter describes the materials and methods for these experiments that document galectin-3-U1 snRNP complexes initiate the splicing reaction in a U1-depleted nuclear extract.


Asunto(s)
Galectina 3 , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Empalmosomas , Fraccionamiento Celular , Galectina 3/genética , Galectina 3/metabolismo , Células HeLa/metabolismo , Humanos , Espacio Intranuclear/química , Espacio Intranuclear/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Uracilo/análisis , Uracilo/metabolismo
5.
Biochim Biophys Acta ; 1800(2): 181-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19616076

RESUMEN

This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (M(r) approximately 30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH(2)-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein-protein interactions rather than through protein-carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3's anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein's carbohydrate-binding activity, per se, remains a challenge for future investigations.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Galectina 3/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Línea Celular Tumoral , Humanos , Carioferinas/metabolismo , Ligandos , Señales de Exportación Nuclear/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Empalmosomas/fisiología , Proteína Exportina 1
6.
J Vis Exp ; (166)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33369604

RESUMEN

Classic depletion-reconstitution experiments indicate that galectin-3 is a required splicing factor in nuclear extracts. The mechanism of incorporation of galectin-3 into the splicing pathway is addressed in this paper. Sedimentation of HeLa cell nuclear extracts on 12%-32% glycerol gradients yields fractions enriched in an endogenous ~10S particle that contains galectin-3 and U1 snRNP. We now describe a protocol to deplete nuclear extracts of U1 snRNP with concomitant loss of splicing activity. Splicing activity in the U1-depleted extract can be reconstituted by the galectin-3 - U1 snRNP particle trapped on agarose beads covalently coupled with anti-galectin-3 antibodies. The results indicate that the galectin-3 - U1 snRNP - pre-mRNA ternary complex is a functional E complex leading to intermediates and products of the splicing reaction and that galectin-3 enters the splicing pathway through its association with U1 snRNP. The scheme of using complexes affinity- or immuno-selected on beads to reconstitute splicing activity in extracts depleted of a specific splicing factor may be generally applicable to other systems.


Asunto(s)
Galectina 3/genética , Microesferas , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Núcleo Celular/metabolismo , Galectina 3/metabolismo , Células HeLa , Humanos , Péptidos/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética
7.
Biochemistry ; 48(32): 7705-12, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19603745

RESUMEN

Previously, we showed that galectin-1 and galectin-3 are redundant pre-mRNA splicing factors associated with the spliceosome throughout the splicing pathway. Here we present evidence for the association of galectin-3 with snRNPs outside of the spliceosome (i.e., in the absence of pre-mRNA splicing substrate). Immunoprecipitation of HeLa nuclear extract with anti-galectin-3 resulted in the coprecipitation of the five spliceosomal snRNAs, core Sm polypeptides, and the U1-specific protein, U1 70K. When nuclear extract was fractionated on glycerol gradients, some galectin-3 molecules cosedimented with snRNP complexes. This cosedimentation represents bona fide galectin-3--snRNP complexes as (i) immunoprecipitation of gradient fractions with anti-galectin-3 yielded several complexes with varying ratios of snRNAs and associated proteins and (ii) the distribution of galectin-3--snRNP complexes was altered when the glycerol gradient was sedimented in the presence of lactose, a galectin ligand. A complex at approximately 10S showed an association of galectin-3 with U1 snRNP that was sensitive to treatment with ribonuclease A. We tested the ability of this U1 snRNP to recognize an exogenous pre-mRNA substrate. Under conditions that assemble early splicing complexes, we found this isolated galectin-3--U1 snRNP particle was sufficient to load galectin-3 onto a pre-mRNA substrate, but not onto a control RNA lacking splice sites. Pretreatment of the U1 snRNP with micrococcal nuclease abolished the assembly of galectin-3 onto this early complex. These data identify galectin-3 as a polypeptide associated with snRNPs in the absence of splicing substrate and describe a mechanism for the assembly of galectin-3 onto the forming spliceosome.


Asunto(s)
Galectina 3/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Animales , Galectina 3/genética , Células HeLa , Humanos , Sustancias Macromoleculares/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalmosomas/genética
8.
Arch Biochem Biophys ; 475(2): 100-8, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18455493

RESUMEN

Previous experiments had established that galectin-3 (Gal3) is a factor involved in cell-free splicing of pre-mRNA. Addition of monoclonal antibody NCL-GAL3, whose epitope maps to the NH2-terminal 14 amino acids of Gal3, to a splicing-competent nuclear extract inhibited the splicing reaction. In contrast, monoclonal antibody anti-Mac-2, whose epitope maps to residues 48-100 containing multiple repeats of a 9-residue motif PGAYPGXXX, had no effect on splicing. Consistent with the notion that this region bearing the PGAYPGXXX repeats is sequestered through interaction with the splicing machinery and is inaccessible to the anti-Mac-2 antibody, a synthetic peptide containing three perfect repeats of the sequence PGAYPGQAP (27-mer) inhibited the splicing reaction, mimicking a dominant-negative mutant. Addition of a peptide corresponding to a scrambled sequence of the same composition (27-mer-S) failed to yield the same effect. Finally, GST-hGal3(1-100), a fusion protein containing glutathione-S-transferase and a portion of the Gal3 polypeptide including the PGAYPGXXX repeats, also exhibited a dominant-negative effect on splicing.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Galectina 3/química , Galectina 3/metabolismo , Empalme del ARN , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Mapeo Epitopo , Galectina 3/genética , Galectina 3/aislamiento & purificación , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Hibridomas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Empalmosomas
9.
Arch Biochem Biophys ; 478(1): 18-25, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18662664

RESUMEN

Galectin-1 (Gal1) and galectin-3 (Gal3) are two members of a family of carbohydrate-binding proteins that are found in the nucleus and that participate in pre-mRNA splicing assayed in a cell-free system. When nuclear extracts (NE) of HeLa cells were subjected to adsorption on a fusion protein containing glutathione S-transferase (GST) and Gal3, the general transcription factor II-I (TFII-I) was identified by mass spectrometry as one of the polypeptides specifically bound. Lactose and other saccharide ligands of the galectins inhibited GST-Gal3 pull-down of TFII-I while non-binding carbohydrates failed to yield the same effect. Similar results were also obtained using GST-Gal1. Site-directed mutants of Gal1, expressed and purified as GST fusion proteins, were compared with the wild-type (WT) in three assays: (a) binding to asialofetuin-Sepharose as a measure of the carbohydrate-binding activity; (b) pull-down of TFII-I from NE; and (c) reconstitution of splicing in NE depleted of galectins as a test of the in vitro splicing activity. The binding of GST-Gal1(N46D) to asialofetuin-Sepharose was less than 10% of that observed for GST-Gal1(WT), indicating that the mutant was deficient in carbohydrate-binding activity. In contrast, both GST-Gal1(WT) and GST-Gal1(N46D) were equally efficient in pull-down of TFII-I and in reconstitution of splicing activity in the galectin-depleted NE. Moreover, while the splicing activity of the wild-type protein can be inhibited by saccharide ligands, the carbohydrate-binding deficient mutant was insensitive to such inhibition. Together, all of the results suggest that the carbohydrate-binding and the splicing activities of Gal1 can be dissociated and therefore, saccharide-binding, per se, is not required for the splicing activity.


Asunto(s)
Carbohidratos/química , Galectina 1/química , Empalme Alternativo , Núcleo Celular/metabolismo , Galectina 3/metabolismo , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Unión Proteica , Proteómica/métodos , ARN/química , Proteínas Recombinantes/química , Empalmosomas/metabolismo , Factores de Transcripción/metabolismo
10.
Methods Mol Biol ; 1207: 431-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25253157

RESUMEN

Several lines of evidence have been accumulated to indicate that galectin-1 and galectin-3 are two of the many proteins involved in nuclear splicing of pre-mRNA. First, nuclear extracts, capable of carrying out splicing of pre-mRNA in a cell-free assay, contain both of the galectins. Second, depletion of the galectins from nuclear extracts, using either lactose affinity chromatography or immunoadsorption with antibodies, results in concomitant loss of splicing activity. Third, addition of either galectin-1 or galectin-3 to the galectin-depleted extract reconstitutes the splicing activity. Fourth, the addition of saccharides that bind to galectin-1 and galectin-3 with high affinity (e.g., lactose or thiodigalactoside) to nuclear extract results in inhibition of splicing whereas parallel addition of saccharides that do not bind to the galectins (e.g., cellobiose) fail to yield the same effect. Finally, when a splicing reaction is subjected to immunoprecipitation by antibodies directed against galectin-1, radiolabeled RNA species corresponding to the starting pre-mRNA substrate, the mature mRNA product, and intermediates of the splicing reaction are coprecipitated with the galectin. Similar results were also obtained with antibodies against galectin-3. This chapter describes two key assays used in our studies: one reports on the splicing activity by looking at product formation on a denaturing gel; the other reports on the intermediates of spliceosome assembly using non-denaturing or native gels.


Asunto(s)
Galectina 1/metabolismo , Galectina 3/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Carbohidratos/farmacología , Núcleo Celular/metabolismo , Electroforesis en Gel de Gradiente Desnaturalizante , Galectina 1/química , Galectina 1/aislamiento & purificación , Galectina 1/farmacología , Galectina 3/química , Galectina 3/aislamiento & purificación , Galectina 3/farmacología , Células HeLa , Humanos , Péptidos/síntesis química , Péptidos/farmacología , Estructura Terciaria de Proteína , Empalme del ARN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA