RESUMEN
We report on the commissioning of a full aperture backscatter diagnostics station for the kilojoule, nanosecond high repetition rate L4n laser operating at a wavelength of 527 nm at the Extreme Light Infrastructure (ELI) - Beamlines, Dolni Brezany, Czech Republic. Light scattered back from laser-plasma interaction into the cone of the final focusing lens is captured and split into different channels to measure the signatures of laser plasma instabilities from stimulated Brillouin scattering, stimulated Raman scattering, and two plasmon decay with respect to back scattered energy, its spectrum, and its temporal profile. The performance was confirmed in a commissioning experiment with more than 800 shots at laser intensities ranging from 0.5 × 1013 to 1.1 × 1015 W cm-2. These diagnostics are permanently installed at ELI Beamlines, and can be used to understand the details of laser-plasma interactions in experiments with kJ and 527 nm light. The large number of shots that can be collected in an experimental campaign will allow us to study the details of the laser-plasma interaction with a high level of confidence.
RESUMEN
The high use of antibiotics in human and veterinary medicine has led to a wide spread of antibiotics and antimicrobial resistance into the environment. In recent years, various studies have shown that antibiotic residues, resistant bacteria and resistance genes, occur in aquatic environments and that clinical wastewater seems to be a hot spot for the environmental spread of antibiotic resistance. Here a representative statistical analysis of various sampling points is presented, containing different proportions of clinically influenced wastewater. The statistical analysis contains the calculation of the odds ratios for any combination of antibiotics with resistant bacteria or resistance genes, respectively. The results were screened for an increased probability of detecting resistant bacteria, or resistance genes, with the simultaneous presence of antibiotic residues. Positive associated sets were then compared, with regards to the detected median concentration, at the investigated sampling points. All results show that the sampling points with the highest proportion of clinical wastewater always form a distinct cluster concerning resistance. The results shown in this study lead to the assumption that ciprofloxacin is a good indicator of the presence of multidrug resistant P. aeruginosa and extended spectrum ß-lactamase (ESBL)-producing Klebsiella spec., Enterobacter spec. and Citrobacter spec., as it positively relates with both parameters. Furthermore, a precise relationship between carbapenemase genes and meropenem, regarding the respective sampling sites, could be obtained. These results highlight the role of clinical wastewater for the dissemination and development of multidrug resistance.
Asunto(s)
Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Aguas Residuales/microbiología , Antibacterianos/farmacología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamasas/metabolismoRESUMEN
Two strong arguments in favor of magnetically driven unconventional superconductivity arise from the coexistence and closeness of superconducting and magnetically ordered phases on the one hand, and from the emergence of magnetic spin-resonance modes at the superconducting transition on the other hand. Combining these two arguments one may ask about the nature of superconducting spin-resonance modes occurring in an antiferromagnetic state. This problem can be studied in underdoped BaFe2 As2, for which the local coexistence of large moment antiferromagnetism and superconductivity is well established by local probes. However, polarized neutron scattering experiments are required to identify the nature of the resonance modes. In the normal state of Co underdoped BaFe2 As2 the antiferromagnetic order results in broad magnetic gaps opening in all three spin directions that are reminiscent of the magnetic response in the parent compound. In the superconducting state two distinct anisotropic resonance excitations emerge, but in contrast to numerous studies on optimum and over-doped BaFe2 As2 there is no isotropic resonance excitation. The two anisotropic resonance modes appearing within the antiferromagnetic phase are attributed to a band selective superconducting state, in which longitudinal magnetic excitations are gapped by antiferromagnetic order with sizable moment.
RESUMEN
The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obtained by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Δs), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5 < x < 0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Δs in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Δs to higher energies, peaking at values of 3Δs for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.
RESUMEN
80 measurements of the airway resistance of 20 patients did not yield any significant differences with or without using a bacterial filter (Pall PF 30) (p = 0.1213). Likewise, lung function tests conducted in 61 further patients did not reveal any relevant changes caused by introducing the filter, in respect of the lung function parameters VKin, FEV1, PEF, FEF25, FEF50, FEF75 and TLCO. In these studies the flow receptors were examined for contamination by bacteria. The introduction of the bacterial filter reduced the total count of identified germs from 108, 615 to 307, i.e. by 99.7 per cent, the greatest contamination being found in those parts that were close to the patient (57.6% with filter, 97.1% without filter). Germs of the resident flora of the mouth and pharynx were identified, and occasionally also potential infectious agents such as staphylococcus aureus and streptococcus pneumoniae. The use of a filter system results in a marked decrease in the exposition to germs in lung function tests, without exercising any adverse effect on the measurement data (cross-contamination risk: 0.00078%). This is also achieved--albeit to a lesser extent--by changing those parts of the flow receptor that are close to the patient (cross-contamination risk: 0.0841%). Hence, the use of a filter system appears particularly meaningful in patients with considerable immunodeficiency (advanced stages of HIV infection).