Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 21(5): 525-534, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32313246

RESUMEN

Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.


Asunto(s)
Células Dendríticas/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Monocitos/fisiología , Esclerosis Múltiple/inmunología , Fagocitos/fisiología , Animales , Autoinmunidad , Diferenciación Celular , Células Cultivadas , Sistema Nervioso Central , Quimiocina CXCL10/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inflamación Neurogénica , Proteína Amiloide A Sérica/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética
4.
Elife ; 112022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749158

RESUMEN

The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.


Asunto(s)
Papilas Gustativas , Lengua , Animales , Macrófagos , Ratones , Gusto/fisiología , Lengua/inervación
5.
Sci Immunol ; 7(75): eabj0140, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112694

RESUMEN

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by accumulation of surfactant lipoproteins within the lung alveoli. Alveolar macrophages (AMs) are crucial for surfactant clearance, and their differentiation depends on colony-stimulating factor 2 (CSF2), which regulates the establishment of an AM-characteristic gene regulatory network. Here, we report that the transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is essential for the development of the AM identity, as demonstrated by transcriptome and chromatin accessibility analysis. Furthermore, C/EBPß-deficient AMs showed severe defects in proliferation, phagocytosis, and lipid metabolism, collectively resulting in a PAP-like syndrome. Mechanistically, the long C/EBPß protein variants LAP* and LAP together with CSF2 signaling induced the expression of Pparg isoform 2 but not Pparg isoform 1, a molecular regulatory mechanism that was also observed in other CSF2-primed macrophages. These results uncover C/EBPß as a key regulator of AM cell fate and shed light on the molecular networks controlling lipid metabolism in macrophages.


Asunto(s)
Macrófagos Alveolares , Surfactantes Pulmonares , Cromatina/metabolismo , Metabolismo de los Lípidos , Lipoproteínas/metabolismo , Macrófagos Alveolares/metabolismo , PPAR gamma/metabolismo , Isoformas de Proteínas/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA