Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Med Virol ; 96(6): e29739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899449

RESUMEN

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Celular , Glicoproteína de la Espiga del Coronavirus , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Citocinas/inmunología , Inmunización Secundaria , Inmunoglobulina G/sangre , Estudios Longitudinales , Fosfoproteínas/inmunología , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731860

RESUMEN

The COVID-19 pandemic has underscored the critical need for the advancement of diagnostic and therapeutic platforms. These platforms rely on the rapid development of molecular binders that should facilitate surveillance and swift intervention against viral infections. In this study, we have evaluated by three independent research groups the binding characteristics of various published RNA and DNA aptamers targeting the spike protein of the SARS-CoV-2 virus. For this comparative analysis, we have employed different techniques such as biolayer interferometry (BLI), enzyme-linked oligonucleotide assay (ELONA), and flow cytometry. Our data show discrepancies in the reported specificity and affinity among several of the published aptamers and underline the importance of standardized methods, the impact of biophysical techniques, and the controls used for aptamer characterization. We expect our results to contribute to the selection and application of suitable aptamers for the detection of SARS-CoV-2.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/efectos de los fármacos , Humanos , COVID-19/virología , COVID-19/metabolismo , Interferometría/métodos , Citometría de Flujo/métodos
3.
Int J Pharm ; 657: 124131, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643811

RESUMEN

Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.


Asunto(s)
Vacunas contra el SIDA , Preparaciones de Acción Retardada , VIH-1 , Hidrogeles , Nanopartículas , Polietilenglicoles , Hidrogeles/química , Nanopartículas/química , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/química , Polietilenglicoles/química , VIH-1/inmunología , Dióxido de Silicio/química , Humanos , Liberación de Fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química
4.
Front Immunol ; 15: 1338492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380318

RESUMEN

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.


Asunto(s)
Vacunas Sintéticas , Virus Vaccinia , Ratas , Animales , Virus Vaccinia/genética , Linfocitos T CD8-positivos , Transgenes
5.
iScience ; 27(6): 110138, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38974469

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron breakthrough infection (BTI) induced better protection than triple vaccination. To address the underlying immunological mechanisms, we studied antibody and T cell response dynamics during vaccination and after BTI. Each vaccination significantly increased peak neutralization titers with simultaneous increases in circulating spike-specific T cell frequencies. Neutralization titers significantly associated with a reduced hazard rate for SARS-CoV-2 infection. Yet, 97% of triple vaccinees became SARS-CoV-2 infected. BTI further boosted neutralization magnitude and breadth, broadened virus-specific T cell responses to non-vaccine-encoded antigens, and protected with an efficiency of 88% from further infections by December 2022. This effect was then assessed by utilizing mathematical modeling, which accounted for time-dependent infection risk, the antibody, and T cell concentration at any time point after BTI. Our findings suggest that cross-variant protective hybrid immunity induced by vaccination and BTI was an important contributor to the reduced virus transmission observed in Bavaria in late 2022 and thereafter.

6.
J Control Release ; 371: 179-192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795814

RESUMEN

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.


Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Administración Oral , Nanopartículas/administración & dosificación , Mucosa Bucal/inmunología , COVID-19/prevención & control , Femenino , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lípidos/química , Lípidos/administración & dosificación , ARN Mensajero/administración & dosificación , Liposomas
7.
Cell Rep Med ; 5(4): 101483, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579727

RESUMEN

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Linfocitos T CD4-Positivos , Receptores de IgG/metabolismo , Autoanticuerpos/metabolismo , Trogocitosis
8.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136407

RESUMEN

Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA