Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 22(16): 19423-39, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321026

RESUMEN

In this work, we propose a method for designing optical devices described by coupled-mode equations. Following a commonly applied optimization strategy, we combine gradient-based optimization algorithms with an adjoint sensitivity analysis of the coupled-mode equations to obtain an optimization scheme that can handle a large number of design parameters. To demonstrate this adjoint-enabled optimization method, we design a silicon-on-insulator Raman wavelength converter. As structure, we consider a waveguide constructed from a series of interconnected and adiabatically-varying linear tapers, and treat the width at each interconnection point, the waveguide length, and the pump-Stokes frequency difference as independent design parameters. Optimizing with respect to these 1603 parameters results in an improvement of more than 10 dB in the conversion efficiency for a waveguide length of 6.28 cm and frequency difference 187 GHz below the Raman shift as compared to a converter designed by the conventional phase-matching design rule and operating at perfect Raman resonance. The increase in conversion efficiency is also accompanied by a more than 7 dB-improvement in the Stokes amplification. Hence, the adjoint-enabled optimization allows us to identify a more efficient method for achieving Raman conversion than conventional phase-matching. We also show that adjoint-enabled optimization significantly improves design robustness. In case of the Raman converter example, this leads to a sensitivity with respect to local variations in waveguide width that is several orders of magnitude smaller for the optimized design than for the phase-matched one.

2.
Opt Express ; 22(1): 646-60, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515024

RESUMEN

We present an iterative design method for the coupling and the mode conversion of arbitrary modes to focused surface plasmons using a large array of aperiodically randomly located slits in a thin metal film. As the distance between the slits is small and the number of slits is large, significant mutual coupling occurs between the slits which makes an accurate computation of the field scattered by the slits difficult. We use an accurate modal source radiator model to efficiently compute the fields in a significantly shorter time compared with three-dimensional (3D) full-field rigorous simulations, so that iterative optimization is efficiently achieved. Since our model accounts for mutual coupling between the slits, the scattering by the slits of both the source wave and the focused surface plasmon can be incorporated in the optimization scheme. We apply this method to the design of various types of couplers for arbitrary fiber modes and a mode demultiplexer that focuses three orthogonal fiber modes to three different foci. Finally, we validate our design results using fully vectorial 3D finite-difference time-domain (FDTD) simulations.

3.
Nano Lett ; 11(7): 2693-8, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21627101

RESUMEN

A novel type of multiple-wavelength focusing plasmonic coupler based on a nonperiodic nanoslit array is designed and experimentally demonstrated. An array of nanoslits patterned on a thin metal film is used to couple free-space light into surface plasmon polaritons (SPPs) and simultaneously focus different-wavelength SPPs into arbitrary predefined locations in the two-dimensional plane. We design and fabricate a compact triplexer on a glass substrate with an integrated silicon photodetector. The photocurrent spectra demonstrate that the incident light is effectively coupled to SPPs and routed into three different focal spots depending on the wavelength. The proposed scheme provides a simple method of building wavelength-division multiplexing and spectral filtering elements, integrated with other plasmonic and optoelectronic devices.


Asunto(s)
Nanotecnología/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Algoritmos , Diseño de Equipo , Oro/química , Luz , Membranas Artificiales , Tamaño de la Partícula , Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA