Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137305

RESUMEN

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular , Sistemas CRISPR-Cas , Genoma , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ingeniería Genética , Análisis de la Célula Individual
2.
Nat Immunol ; 24(1): 69-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522544

RESUMEN

The molecular regulation of human hematopoietic stem cell (HSC) maintenance is therapeutically important, but limitations in experimental systems and interspecies variation have constrained our knowledge of this process. Here, we have studied a rare genetic disorder due to MECOM haploinsufficiency, characterized by an early-onset absence of HSCs in vivo. By generating a faithful model of this disorder in primary human HSCs and coupling functional studies with integrative single-cell genomic analyses, we uncover a key transcriptional network involving hundreds of genes that is required for HSC maintenance. Through our analyses, we nominate cooperating transcriptional regulators and identify how MECOM prevents the CTCF-dependent genome reorganization that occurs as HSCs differentiate. We show that this transcriptional network is co-opted in high-risk leukemias, thereby enabling these cancers to acquire stem cell properties. Collectively, we illuminate a regulatory network necessary for HSC self-renewal through the study of a rare experiment of nature.


Asunto(s)
Leucemia , Neoplasias , Humanos , Células Madre Hematopoyéticas , Leucemia/genética , Factores de Transcripción/genética , Diferenciación Celular/genética
3.
Nature ; 627(8003): 389-398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253266

RESUMEN

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonales/clasificación , Células Clonales/citología , Células Clonales/metabolismo , ADN Mitocondrial/genética , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Análisis de la Célula Individual , Transcripción Genética , Envejecimiento
4.
Hum Mol Genet ; 25(16): 3588-3599, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27378690

RESUMEN

Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.


Asunto(s)
Proteínas Portadoras/genética , Colesterol/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Enfermedad de Niemann-Pick Tipo C/genética , Animales , Células CHO , Proteínas Portadoras/biosíntesis , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/genética , Fibroblastos/metabolismo , Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Lisosomas/patología , Glicoproteínas de Membrana/biosíntesis , Mutación , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas de Transporte Vesicular
5.
Brain ; 139(Pt 2): 317-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715604

RESUMEN

Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.


Asunto(s)
Autofagia/fisiología , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Agenesia del Cuerpo Calloso/diagnóstico , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Encefalopatías Metabólicas Innatas/diagnóstico , Catarata/diagnóstico , Catarata/genética , Catarata/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico , Lisosomas/genética , Lisosomas/metabolismo , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
7.
Pediatr Res ; 75(1-2): 217-26, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165736

RESUMEN

Pediatric neurodegenerative diseases are a heterogeneous group of diseases that result from specific genetic and biochemical defects. In recent years, studies have revealed a wide spectrum of abnormal cellular functions that include impaired proteolysis, abnormal lipid trafficking, accumulation of lysosomal content, and mitochondrial dysfunction. Within neurons, elaborated degradation pathways such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway are critical for maintaining homeostasis and normal cell function. Recent evidence suggests a pivotal role for autophagy in major adult and pediatric neurodegenerative diseases. We herein review genetic, pathological, and molecular evidence for the emerging link between autophagy dysfunction and lysosomal storage disorders such as Niemann-Pick type C, progressive myoclonic epilepsies such as Lafora disease, and leukodystrophies such as Alexander disease. We also discuss the recent discovery of genetically deranged autophagy in Vici syndrome, a multisystem disorder, and the implications for the role of autophagy in development and disease. Deciphering the exact mechanism by which autophagy contributes to disease pathology may open novel therapeutic avenues to treat neurodegeneration. To this end, an outlook on novel therapeutic approaches targeting autophagy concludes this review.


Asunto(s)
Autofagia , Encefalopatías Metabólicas/patología , Encéfalo/patología , Metabolismo Energético , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Factores de Edad , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/patología , Enfermedad de Alexander/metabolismo , Enfermedad de Alexander/patología , Animales , Autofagia/genética , Encéfalo/metabolismo , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/terapia , Catarata/metabolismo , Catarata/patología , Niño , Metabolismo Energético/genética , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/patología , Degeneración Nerviosa , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Neuronas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Fenotipo , Pronóstico , Factores de Riesgo
8.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39314298

RESUMEN

Most phenotype-associated genetic variants map to non-coding regulatory regions of the human genome. Moreover, variants associated with blood cell phenotypes are enriched in regulatory regions active during hematopoiesis. To systematically explore the nature of these regions, we developed a highly efficient strategy, Perturb-multiome, that makes it possible to simultaneously profile both chromatin accessibility and gene expression in single cells with CRISPR-mediated perturbation of a range of master transcription factors (TFs). This approach allowed us to examine the connection between TFs, accessible regions, and gene expression across the genome throughout hematopoietic differentiation. We discovered that variants within the TF-sensitive accessible chromatin regions, while representing less than 0.3% of the genome, show a ~100-fold enrichment in heritability across certain blood cell phenotypes; this enrichment is strikingly higher than for other accessible chromatin regions. Our approach facilitates large-scale mechanistic understanding of phenotype-associated genetic variants by connecting key cis-regulatory elements and their target genes within gene regulatory networks.

9.
Nat Commun ; 15(1): 584, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233389

RESUMEN

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteómica , Neuronas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Mutación
10.
Cell Genom ; 4(4): 100526, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537633

RESUMEN

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.


Asunto(s)
Predisposición Genética a la Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Hispánicos o Latinos/genética , Factor de Transcripción Ikaros/genética
11.
Acta Neuropathol ; 125(2): 187-99, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23138650

RESUMEN

Accumulation of amyloid-ß (Aß) and neurofibrillary tangles in the brain, inflammation and synaptic and neuronal loss are some of the major neuropathological hallmarks of Alzheimer's disease (AD). While genetic mutations in amyloid precursor protein and presenilin-1 and -2 (PS1 and PS2) genes cause early-onset familial AD, the etiology of sporadic AD is not fully understood. Our current study shows that changes in conformation of endogenous wild-type PS1, similar to those found with mutant PS1, occur in sporadic AD brain and during normal aging. Using a mouse model of Alzheimer's disease (Tg2576) that overexpresses the Swedish mutation of amyloid precursor protein but has normal levels of endogenous wild-type presenilin, we report that the percentage of PS1 in a pathogenic conformation increases with age. Importantly, we found that this PS1 conformational shift is associated with amyloid pathology and precedes amyloid-ß deposition in the brain. Furthermore, we found that oxidative stress, a common stress characteristic of aging and AD, causes pathogenic PS1 conformational change in neurons in vitro, which is accompanied by increased Aß42/40 ratio. The results of this study provide important information about the timeline of pathogenic changes in PS1 conformation during aging and suggest that structural changes in PS1/γ-secretase may represent a molecular mechanism by which oxidative stress triggers amyloid-ß accumulation in aging and in sporadic AD brain.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/metabolismo , Presenilina-1/química , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Células Cultivadas , Femenino , Degeneración Lobar Frontotemporal/genética , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/genética , Placa Amiloide/patología , Presenilina-1/genética , Conformación Proteica
12.
Res Sq ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398196

RESUMEN

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect novel therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adaptor protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia, characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, C-01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate putative molecular targets of C-01 and potential mechanisms of action. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future Investigational New Drug (IND)-enabling studies.

13.
Acta Neuropathol ; 124(2): 153-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22744791

RESUMEN

Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Autofagia/fisiología , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo
15.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978700

RESUMEN

In this issue, Le Coz et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201750) describe a novel immunodeficiency syndrome caused by mutations in SPI1. Through a series of in-depth studies, the authors provide insights into how SPI1 affects blood lineage specification, highlighting the important role of master transcription factors as cellular fate determinants.


Asunto(s)
Linfocitos B
16.
J Exp Med ; 218(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857290

RESUMEN

Advances in genome sequencing have resulted in the identification of the causes for numerous rare diseases. However, many cases remain unsolved with standard molecular analyses. We describe a family presenting with a phenotype resembling inherited thrombocytopenia 2 (THC2). THC2 is generally caused by single nucleotide variants that prevent silencing of ANKRD26 expression during hematopoietic differentiation. Short-read whole-exome and genome sequencing approaches were unable to identify a causal variant in this family. Using long-read whole-genome sequencing, a large complex structural variant involving a paired-duplication inversion was identified. Through functional studies, we show that this structural variant results in a pathogenic gain-of-function WAC-ANKRD26 fusion transcript. Our findings illustrate how complex structural variants that may be missed by conventional genome sequencing approaches can cause human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Polimorfismo de Nucleótido Simple/genética , Trombocitopenia/genética , Adolescente , Adulto , Anciano , Línea Celular , Línea Celular Tumoral , Niño , Rotura Cromosómica , Trastornos de los Cromosomas/genética , Exoma/genética , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Trombocitopenia/congénito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA