Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569335

RESUMEN

Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975-2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that the primary consumers of prescription drugs are elderly patients, applications of "aging-in-a-dish" models would be appropriate for screening proarrhythmia risks. However, acquiring such models, including cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs), presents extensive challenges. We proposed the hypothesis that CMs differentiated from iPSCs derived from Hutchinson-Gilford progeria syndrome (HGPS, progeria) patients, an ultra-rare premature aging syndrome, can mimic the phenotypes of aging CMs. Our objective, therefore, was to examine this hypothesis by analyzing the response of 11 reference compounds utilized by the Food and Drug Administration (FDA)'s Comprehensive in vitro Proarrhythmia Assay (CiPA) using progeria and control CMs. As a sensitive surrogate marker of modulating cardiac excitation-contraction coupling, we evaluated drug-induced changes in calcium transient (CaT). We observed that the 80% CaT peak duration in the progeria CMs (0.98 ± 0.04 s) was significantly longer than that of control CMs (0.70 ± 0.05 s). Furthermore, when the progeria CMs were subjected to four doses of 11 compounds from low-, intermediate-, and high-risk categories, they demonstrated greater arrhythmia susceptibility than control cells, as shown through six-parameter CaT profile analyses. We also employed the regression analysis established by CiPA to classify the 11 reference compounds and compared proarrhythmia susceptibilities between the progeria and control CMs. This analysis revealed a greater proarrhythmia susceptibility in the progeria CMs compared to the control CMs. Interestingly, in both CMs, the compounds categorized as low risk did not exceed the safety risk threshold of 0.8. In conclusion, our study demonstrates increased proarrhythmia sensitivity in progeria CMs when tested with reference compounds. Future studies are needed to analyze underlying mechanisms and further validate our findings using a larger array of reference compounds.


Asunto(s)
Células Madre Pluripotentes Inducidas , Progeria , Animales , Miocitos Cardíacos/fisiología , Preparaciones Farmacéuticas , Envejecimiento
2.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260376

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help understand the ionic underpinnings of, and to simulate, various cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created simulated datasets by applying various protocols to a population of in silico cells with known conductance variations, and we fitted to those datasets. We found that calibrating models to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation held regardless of whether the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.

3.
J Pharmacol Toxicol Methods ; 128: 107531, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852688

RESUMEN

The one-size-fits-all approach has been the mainstream in medicine, and the well-defined standards support the development of safe and effective therapies for many years. Advancing technologies, however, enabled precision medicine to treat a targeted patient population (e.g., HER2+ cancer). In safety pharmacology, computational population modeling has been successfully applied in virtual clinical trials to predict drug-induced proarrhythmia risks against a wide range of pseudo cohorts. In the meantime, population modeling in safety pharmacology experiments has been challenging. Here, we used five commercially available human iPSC-derived cardiomyocytes growing in 384-well plates and analyzed the effects of ten potential proarrhythmic compounds with four concentrations on their calcium transients (CaTs). All the cell lines exhibited an expected elongation or shortening of calcium transient duration with various degrees. Depending on compounds inhibiting several ion channels, such as hERG, peak and late sodium and L-type calcium or IKs channels, some of the cell lines exhibited irregular, discontinuous beating that was not predicted by computational simulations. To analyze the shapes of CaTs and irregularities of beat patterns comprehensively, we defined six parameters to characterize compound-induced CaT waveform changes, successfully visualizing the similarities and differences in compound-induced proarrhythmic sensitivities of different cell lines. We applied Bayesian statistics to predict sample populations based on experimental data to overcome the limited number of experimental replicates in high-throughput assays. This process facilitated the principal component analysis to classify compound-induced sensitivities of cell lines objectively. Finally, the association of sensitivities in compound-induced changes between phenotypic parameters and ion channel inhibitions measured using patch clamp recording was analyzed. Successful ranking of compound-induced sensitivity of cell lines was in lined with visual inspection of raw data.

4.
Biochim Biophys Acta ; 1797(10): 1749-58, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20646994

RESUMEN

Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(P)H and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes.


Asunto(s)
Flavoproteínas/metabolismo , Isoflurano/farmacología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , NADP/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Fluorometría/métodos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Confocal , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
5.
J Am Soc Nephrol ; 21(8): 1275-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20488951

RESUMEN

The activation of heterotrimeric G protein signaling is a key feature in the pathophysiology of polycystic kidney diseases (PKD). In this study, we report abnormal overexpression of activator of G protein signaling 3 (AGS3), a receptor-independent regulator of heterotrimeric G proteins, in rodents and humans with both autosomal recessive and autosomal dominant PKD. Increased AGS3 expression correlated with kidney size, which is an index of severity of cystic kidney disease. AGS3 expression localized exclusively to distal tubular segments in both normal and cystic kidneys. Short hairpin RNA-induced knockdown of endogenous AGS3 protein significantly reduced proliferation of cystic renal epithelial cells by 26 +/- 2% (P < 0.001) compared with vehicle-treated and control short hairpin RNA-expressing epithelial cells. In summary, this study suggests a relationship between aberrantly increased AGS3 expression in renal tubular epithelia affected by PKD and epithelial cell proliferation. AGS3 may play a receptor-independent role to regulate Galpha subunit function and control epithelial cell function in PKD.


Asunto(s)
Proteínas Portadoras/fisiología , Células Epiteliales/patología , Enfermedades Renales Poliquísticas/patología , Animales , Proteínas Portadoras/genética , Proliferación Celular , Células Cultivadas , Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido , Humanos
6.
Am J Physiol Cell Physiol ; 299(2): C506-15, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20519447

RESUMEN

During reperfusion, the interplay between excess reactive oxygen species (ROS) production, mitochondrial Ca(2+) overload, and mitochondrial permeability transition pore (mPTP) opening, as the crucial mechanism of cardiomyocyte injury, remains intriguing. Here, we investigated whether an induction of a partial decrease in mitochondrial membrane potential (DeltaPsi(m)) is an underlying mechanism of protection by anesthetic-induced preconditioning (APC) with isoflurane, specifically addressing the interplay between ROS, Ca(2+), and mPTP opening. The magnitude of APC-induced decrease in DeltaPsi(m) was mimicked with the protonophore 2,4-dinitrophenol (DNP), and the addition of pyruvate was used to reverse APC- and DNP-induced decrease in DeltaPsi(m). In cardiomyocytes, DeltaPsi(m), ROS, mPTP opening, and cytosolic and mitochondrial Ca(2+) were measured using confocal microscope, and cardiomyocyte survival was assessed by Trypan blue exclusion. In isolated cardiac mitochondria, antimycin A-induced ROS production and Ca(2+) uptake were determined spectrofluorometrically. In cells exposed to oxidative stress, APC and DNP increased cell survival, delayed mPTP opening, and attenuated ROS production, which was reversed by mitochondrial repolarization with pyruvate. In isolated mitochondria, depolarization by APC and DNP attenuated ROS production, but not Ca(2+) uptake. However, in stressed cardiomyocytes, a similar decrease in DeltaPsi(m) attenuated both cytosolic and mitochondrial Ca(2+) accumulation. In conclusion, a partial decrease in DeltaPsi(m) underlies cardioprotective effects of APC by attenuating excess ROS production, resulting in a delay in mPTP opening and an increase in cell survival. Such decrease in DeltaPsi(m) primarily attenuates mitochondrial ROS production, with consequential decrease in mitochondrial Ca(2+) uptake.


Asunto(s)
Calcio/fisiología , Isoflurano/farmacología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Citoprotección/efectos de los fármacos , Citoprotección/fisiología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Ratas , Ratas Wistar , Factores de Tiempo
7.
Phys Biol ; 7(2): 026011, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20526029

RESUMEN

Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma membrane-localized wild-type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 microm x 1 microm bleach region-of-interest (ROI) and a 0.5 microm x 0.5 microm bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in the yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane-associated fluorophores using FRAP on commercial confocal laser scanning microscopes.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteínas ras/análisis , Proteínas ras/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética
8.
J Cell Physiol ; 219(1): 45-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19086031

RESUMEN

Calcium-regulated non-receptor proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of endothelin-1 (ET-1) signaling in human glomerular mesangial cells (GMC). We aimed to identify which small G-protein is acting downstream of Pyk2. Dominant interfering Pyk2 construct, termed calcium regulated non kinase (CRNK) or green fluorescent protein (control) were expressed in GMC using adenovirus-mediated gene transfer. ET-1 stimulation resulted in a significant increase of Pyk2 phosphorylation accompanied by GTP-loading of Rap1 and RhoA. CRNK expression inhibited ET-1-induced autophosphorylation of endogenous Pyk2 and diminished Rap1, but not RhoA, activation. The mechanism linking Pyk2 and Rap1 included (1) increased autophosphorylation of Pyk2 associated with p130Cas, (2) augmented p130Cas Y165 and Y249 phosphorylation, and (3) enhanced p130Cas-BCAR3 complex formation. CRNK expression prevented p130Cas phosphorylation and attenuated p130Cas association with BCAR3. Downregulation of endogenous BCAR3 protein expression using an siRNA technique led to a significant decrease in Rap1 activation in response to ET-1. We observed that endogenous Pyk2 was important for GMC adhesion and spreading. Our data suggest that ET-1 stimulated the GTPase Rap1 (but neither RhoA nor Ras) by a mechanism involving Pyk2 activation and recruitment of the p130Cas/BCAR3 complex in GMC.


Asunto(s)
Adhesión Celular/fisiología , Proteína Sustrato Asociada a CrK/metabolismo , Endotelina-1/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Células Mesangiales/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Proteína Sustrato Asociada a CrK/genética , Endotelina-1/genética , Activación Enzimática , Quinasa 2 de Adhesión Focal/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Factor 2 Liberador de Guanina Nucleótido/genética , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Humanos , Células Mesangiales/citología , Interferencia de ARN , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
9.
Trends Biochem Sci ; 29(11): 609-17, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15501680

RESUMEN

Mechanical stress on the heart can lead to crucially different outcomes. Exercise is beneficial because it causes heart muscle cells to enlarge (hypertrophy). Chronic hypertension also causes hypertrophy, but in addition it causes an excessive increase in fibroblasts and extracellular matrix (fibrosis), death of cardiomyocytes and ultimately heart failure. Recent research shows that stimulation of physiological (beneficial) hypertrophy involves several signaling pathways, including those mediated by protein kinase B (also known as Akt) and the extracellular-signal-regulated kinases 1 and 2 (ERK1/2). Hypertension, beta-adrenergic stimulation and agonists such as angiotensin II (Ang II) activate not only ERK1/2 but also p38 and the Jun N-terminal kinase (JNK), leading to pathological heart remodeling. Despite this progress, the mechanisms that activate fibroblasts to cause fibrosis and those that differentiate between exercise and hypertension to produce physiological and pathological responses, respectively, remain to be established.


Asunto(s)
Ejercicio Físico/fisiología , Hipertensión/complicaciones , Miocardio/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Corazón , Humanos , Hipertensión/metabolismo , Mecanotransducción Celular/fisiología , Modelos Cardiovasculares , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal/fisiología , Estrés Mecánico , Remodelación Ventricular/fisiología
10.
Prog Biophys Mol Biol ; 144: 30-40, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30174171

RESUMEN

The phenotypic conversion of normal fibroblasts to myofibroblasts is central to normal wound healing and to pathological fibrosis that can occur in the heart and many other tissues. The transformation occurs in two stages. The first stage is driven mainly by mechanical changes such as increased stiffness of the heart due to hypertension and cellular contractility. The second stage requires both increasing stiffness and biochemical factors such as the growth factor, TGFß. As more and more cells convert from weakly contractile fibroblasts to strongly contractile myofibroblasts, the stiffness of the ventricular muscle increases. We propose a simple model for the establishment of non-equilibrium steady states with different compositions of fibroblasts and myofibroblasts. Under some conditions a positive feedback loop resulting from the increasing stiffness caused by increasing numbers of myofibroblasts can produce a bifurcation between steady states with low and high myofibroblast content. We illustrate the large mechanical differences between normal fibroblasts and myofibroblasts with measurements in engineered tissue constructs.


Asunto(s)
Retroalimentación Fisiológica , Modelos Biológicos , Miofibroblastos/citología , Animales , Fenómenos Biomecánicos , Humanos , Cinética , Fenotipo
11.
Biochem Biophys Res Commun ; 377(2): 521-525, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18926797

RESUMEN

The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Ratones , Transfección , Proteínas de Unión al GTP rab/genética , Proteína de Unión al GTP rab3A/genética , Proteína de Unión al GTP rab3A/metabolismo
12.
Front Cardiovasc Med ; 5: 120, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283789

RESUMEN

Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.

13.
Physiol Genomics ; 32(1): 28-32, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17956999

RESUMEN

Considerable progress has been made in the last decade in the engineering and construction of a number of artificial tissue types. These constructs are typically viewed from the perspective of possible sources for implant and transplant materials in the clinical arena. However, incorporation of engineered tissues, often referred to as three-dimensional (3D) cell culture, also offers the possibility for significant advancements in research for physiological genomics. These 3D systems more readily mimic the in vivo setting than traditional 2D cell culture, and offer distinct advantages over the in vivo setting for some organ systems. As an example, cardiac cells in 3D culture 1) are more accessible for siRNA studies, 2) can be engineered with specific cell types, and 3) offer the potential for high-throughput screening of gene function. Here the state-of-the-art is reviewed and the applications for engineered tissue in genomics research are proposed. The ability to use engineered tissue in combination with genomics creates a bridge between traditional cellular and in vivo studies that is critical to enabling the transition of genetic information into mechanistic understanding of disease processes.


Asunto(s)
Genómica/métodos , Genómica/tendencias , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Animales , Técnicas de Cultivo de Célula , Humanos , Procesamiento de Imagen Asistido por Computador
14.
Assay Drug Dev Technol ; 15(4): 178-188, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28525289

RESUMEN

Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Neuronas/citología , Imagen Óptica , Calcio/metabolismo , Células Cultivadas , Estimulación Eléctrica/instrumentación , Electrodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Imagen Óptica/instrumentación , Fenotipo
15.
J Pharmacol Toxicol Methods ; 87: 68-73, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28456609

RESUMEN

INTRODUCTION: Drug-induced proarrhythmic potential is an important regulatory criterion in safety pharmacology. The application of in silico approaches to predict proarrhythmic potential of new compounds is under consideration as part of future guidelines. Current approaches simulate the electrophysiology of a single human adult ventricular cardiomyocyte. However, drug-induced proarrhythmic potential can be different when cardiomyocytes are surrounded by non-muscle cells. Incorporating fibroblasts in models of myocardium is important particularly for predicting a drugs cardiac liability in the aging population - a growing population who take more medications and exhibit increased cardiac fibrosis. In this study, we used computational models to investigate the effects of fibroblast coupling on the electrophysiology and response to drugs of cardiomyocytes. METHODS: A computational model of cardiomyocyte electrophysiology and ion handling (O'Hara, Virag, Varro, & Rudy, 2011) is coupled to a passive model of fibroblast electrophysiology to test the effects of three compounds that block cardiomyocyte ion channels. Results are compared to model results without fibroblast coupling to see how fibroblasts affect cardiomyocyte action potential duration at 90% repolarization (APD90) and propensity for early after depolarization (EAD). RESULTS: Simulation results show changes in cardiomyocyte APD90 with increasing concentration of three drugs that affect cardiac function (dofetilide, vardenafil and nebivolol) when no fibroblasts are coupled to the cardiomyocyte. Coupling fibroblasts to cardiomyocytes markedly shortens APD90. Moreover, increasing the number of fibroblasts can augment the shortening effect. DISCUSSION: Coupling cardiomyocytes and fibroblasts are predicted to decrease proarrhythmic susceptibility under dofetilide, vardenafil and nebivolol block. However, this result is sensitive to parameters which define the electrophysiological function of the fibroblast. Fibroblast membrane capacitance and conductance (CFB and GFB) have less of an effect on APD90 than the fibroblast resting membrane potential (EFB). This study suggests that in both theoretical models and experimental tissue constructs that represent cardiac tissue, both cardiomyocytes and non-muscle cells should be considered when testing cardiac pharmacological agents.


Asunto(s)
Antiarrítmicos/farmacología , Simulación por Computador , Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , Animales , Antiarrítmicos/efectos adversos , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/efectos de los fármacos
16.
J Evol Stem Cell Res ; 1(2): 1-11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966998

RESUMEN

Calcium (Ca2+) plays a central role in regulating many biological processes in the cell from muscle contraction to neurotransmitter release. The need for reliable fluorescent calcium indicator dyes is of vast importance for studying many aspects of cell biology as well as screening compounds using phenotypic high throughput assays. We have assessed two of the latest generation of calcium indicator dyes, FLIPR Calcium 6 and Cal-520 AM for studying calcium transients (CaTs) in induced pluripotent stem cell (iPSC) -derived human cardiomyocytes. FLIPR Calcium 6 and Cal-520 dyes both displayed robust CaTs with a high signal-to-noise ratio (SNR) and were non-toxic to the cells. The analysis showed that CaT amplitudes were stable between measurements, but CaT duration was more variable and tended to increase between reads. Two methods were compared for drug-screening hit-selection; difference in average (unstandardized) and standardized difference. The unstandardized difference was better for assessing CaT amplitude, whereas standardized difference was equal to or better for assessing CaT duration. In summary, FLIPR Calcium 6 and Cal-520 are suitable dyes for drug-screening using iPSC-derived human cardiomyocytes.

17.
Artículo en Inglés | MEDLINE | ID: mdl-29333534

RESUMEN

Pluripotent Stem Cells were originally derived and cultured using a feeder layer of cells. Movements have been undertaken to transition from this method to one more defined, high-throughput, and without xenogenic factors. Tremendous research has been done in this area and many products have been developed, however, based on our analysis of recent publications in stem cell related journals many in academia are still using older methods like a feeder layer. In this short communication, we discuss the feasibility of transitioning to defined, xeno-free methods, how a standardized method could improve the field and industry, and that a study bringing together multiple institutions comparing culture methods could be done to evaluate the efficacy of these new methods.

18.
J Bioeng Biomed Sci ; 5(3)2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28451466

RESUMEN

Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

19.
J Vis Exp ; (99): e52755, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26068617

RESUMEN

Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Pluripotentes Inducidas/citología , Robótica/métodos , Tejido Adiposo/citología , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular/fisiología , Línea Celular , Fibroblastos/citología , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Células Madre Pluripotentes/citología , Robótica/instrumentación
20.
Biophys Chem ; 100(1-3): 593-605, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12646393

RESUMEN

Cells remodel extracellular matrix during tissue development and wound healing. Similar processes occur when cells compress and stiffen collagen gels. An important task for cell biologists, biophysicists, and tissue engineers is to guide these remodeling processes to produce tissue constructs that mimic the structure and mechanical properties of natural tissues. This requires an understanding of the mechanisms by which this remodeling occurs. Quantitative measurements of the contractile force developed by cells and the extent of compression and stiffening of the matrix describe the results of the remodeling processes. Not only do forces exerted by cells influence the structure of the matrix but also external forces exerted on the matrix can modulate the structure and orientation of the cells. The mechanisms of these processes remain largely unknown, but recent studies of the regulation of myosin-dependent contractile force and of cell protrusion driven by actin polymerization provide clues about the regulation of cellular functions during remodeling.


Asunto(s)
Células , Matriz Extracelular/fisiología , Animales , Pollos , Colágeno/química , Colágeno/metabolismo , Proteínas Contráctiles/fisiología , Fibroblastos/fisiología , Integrinas/metabolismo , Contracción Isométrica/fisiología , Microscopía Fluorescente , Modelos Biológicos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA