Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748538

RESUMEN

Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.


Asunto(s)
Proteínas Bacterianas , Streptococcus pyogenes , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Factores de Virulencia/genética
2.
PLoS Pathog ; 17(12): e1010097, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34969060

RESUMEN

Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.


Asunto(s)
Antígenos Bacterianos/inmunología , Escarlatina/inmunología , Streptococcus pyogenes/inmunología , Superantígenos/inmunología , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino
3.
Antimicrob Agents Chemother ; 66(9): e0231821, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35980187

RESUMEN

Multidrug-resistant (MDR) N. gonorrhoeae is a current public health threat. New therapies are urgently needed. PBT2 is an ionophore that disrupts metal homeostasis. PBT2 administered with zinc is shown to reverse resistance to antibiotics in several bacterial pathogens. Here we show that both N. meningitidis and MDR N. gonorrhoeae are sensitive to killing by PBT2 alone. PBT2 is, thus, a candidate therapeutic for MDR N. gonorrhoeae infections.


Asunto(s)
Gonorrea , Neisseria meningitidis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Humanos , Ionóforos/farmacología , Ionóforos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae , Zinc
4.
Cell Microbiol ; 23(9): e13373, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34155776

RESUMEN

Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes significant morbidity and mortality worldwide. Recent clinical evidence suggests that the inflammatory marker interleukin-1ß (IL-1ß) plays an important role in GAS disease progression, and presents a potential target for therapeutic intervention. Interaction with GAS activates the host inflammasome pathway to stimulate production and secretion of IL-1ß, but GAS can also stimulate IL-1ß production in an inflammasome-independent manner. This review highlights progress that has been made in understanding the importance of host cell inflammasomes and IL-1 signalling in GAS disease, and explores challenges and unsolved problems in this host-pathogen interaction. TAKE AWAY: Inflammasome signalling during GAS infection is an emerging field of research. GAS modulates the NLRP3 inflammasome pathway through multiple mechanisms. SpeB contributes to IL-1ß production independently of the inflammasome pathway. IL-1ß signalling can be host-protective, but also drive severe GAS disease.


Asunto(s)
Inflamasomas , Interleucina-1beta , Infecciones Estreptocócicas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Streptococcus pyogenes
5.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32404435

RESUMEN

Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple , Infecciones Bacterianas/microbiología , Humanos
6.
Immunol Cell Biol ; 99(10): 1040-1052, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462965

RESUMEN

Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes an array of infectious diseases in humans. Accumulating clinical evidence suggests that proinflammatory interleukin (IL)-1ß signaling plays an important role in GAS disease progression. The host regulates the production and secretion of IL-1ß via the cytosolic inflammasome pathway. Activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex requires two signals: a priming signal that stimulates increased transcription of genes encoding the components of the inflammasome pathway, and an activating signal that induces assembly of the inflammasome complex. Here we show that GAS-derived lipoteichoic acid can provide a priming signal for NLRP3 inflammasome activation. As only few GAS-derived proteins have been associated with inflammasome-dependent IL-1ß signaling, we investigated novel candidates that might play a role in activating the inflammasome pathway by infecting mouse bone marrow-derived macrophages and human THP-1 macrophage-like cells with a panel of isogenic GAS mutant strains. We found that the cytolysins streptolysin O (SLO) and streptolysin S are the main drivers of IL-1ß release in proliferating logarithmic phase GAS. Using a mutant form of recombinant SLO, we confirmed that bacterial pore formation on host cell membranes is a key mechanism required for inflammasome activation. Our results suggest that streptolysins are major determinants of GAS-induced inflammation and present an attractive target for therapeutic intervention.


Asunto(s)
Inflamasomas , Infecciones Estreptocócicas , Animales , Interleucina-1beta , Macrófagos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Streptococcus pyogenes , Estreptolisinas
7.
J Antimicrob Chemother ; 76(11): 2850-2853, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450628

RESUMEN

BACKGROUND: Neisseria gonorrhoeae is a Gram-negative bacterial pathogen that causes gonorrhoea. No vaccine is available to prevent gonorrhoea and the emergence of MDR N. gonorrhoeae strains represents an immediate public health threat. OBJECTIVES: To evaluate whether PBT2/zinc may sensitize MDR N. gonorrhoeae to natural cationic antimicrobial peptides. METHODS: MDR strains that contain differing resistance mechanisms against numerous antibiotics were tested in MIC assays. MIC assays were performed using the broth microdilution method according to CLSI guidelines in a microtitre plate. Serially diluted LL-37 or PG-1 was tested in combination with a sub-inhibitory concentration of PBT2/zinc. Serially diluted tetracycline was also tested with sub-inhibitory concentrations of PBT2/zinc and LL-37. SWATH-MS proteomic analysis of N. gonorrhoeae treated with PBT2/zinc, LL-37 and/or tetracycline was performed to determine the mechanism(s) of N. gonorrhoeae susceptibility to antibiotics and peptides. RESULTS: Sub-inhibitory concentrations of LL-37 and PBT2/zinc synergized to render strain WHO-Z susceptible to tetracycline, whereas the killing effect of PG-1 and PBT2/zinc was additive. SWATH-MS proteomic analysis suggested that PBT2/zinc most likely leads to a loss of membrane integrity and increased protein misfolding and, in turn, results in bacterial death. CONCLUSIONS: Here we show that PBT2, a candidate Alzheimer's and Huntington's disease drug, can be repurposed to render MDR N. gonorrhoeae more susceptible to the endogenous antimicrobial peptides LL-37 and PG-1. In the presence of LL-37, PBT2/zinc can synergize with tetracycline to restore tetracycline susceptibility to gonococci resistant to this antibiotic.


Asunto(s)
Enfermedad de Alzheimer , Gonorrea , Enfermedad de Huntington , Preparaciones Farmacéuticas , Enfermedad de Alzheimer/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Gonorrea/tratamiento farmacológico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae , Proteómica
8.
Nat Chem Biol ; 15(5): 463-471, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936502

RESUMEN

Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to bacterial physiology and infection biology. Here we identify gacH, a gene in the Streptococcus pyogenes group A carbohydrate (GAC) biosynthetic cluster, in two independent transposon library screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme human group IIA-secreted phospholipase A2. Subsequent structural and phylogenetic analysis of the GacH extracellular domain revealed that GacH represents an alternative class of glycerol phosphate transferase. We detected the presence of glycerol phosphate in the GAC, as well as the serotype c carbohydrate from Streptococcus mutans, which depended on the presence of the respective gacH homologs. Finally, nuclear magnetic resonance analysis of GAC confirmed that glycerol phosphate is attached to approximately 25% of the GAC N-acetylglucosamine side-chains at the C6 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen interaction and has implications for vaccine design.


Asunto(s)
Glicerol/metabolismo , Fosfatos/metabolismo , Polisacáridos Bacterianos/metabolismo , Streptococcus/metabolismo , Glicerol/química , Fosfatos/química , Polisacáridos Bacterianos/química , Streptococcus/química
9.
Proc Natl Acad Sci U S A ; 115(45): E10662-E10671, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352847

RESUMEN

Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a range of diseases, including fatal invasive infections. However, the mechanisms by which the innate immune system recognizes GAS are not well understood. We herein report that the C-type lectin receptor macrophage inducible C-type lectin (Mincle) recognizes GAS and initiates antibacterial immunity. Gene expression analysis of myeloid cells upon GAS stimulation revealed the contribution of the caspase recruitment domain-containing protein 9 (CARD9) pathway to the antibacterial responses. Among receptors signaling through CARD9, Mincle induced the production of inflammatory cytokines, inducible nitric oxide synthase, and reactive oxygen species upon recognition of the anchor of lipoteichoic acid, monoglucosyldiacylglycerol (MGDG), produced by GAS. Upon GAS infection, Mincle-deficient mice exhibited impaired production of proinflammatory cytokines, severe bacteremia, and rapid lethality. GAS also possesses another Mincle ligand, diglucosyldiacylglycerol; however, this glycolipid interfered with MGDG-induced activation. These results indicate that Mincle plays a central role in protective immunity against acute GAS infection.


Asunto(s)
Lectinas Tipo C/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/patogenicidad , Ácidos Teicoicos/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infecciones Estreptocócicas/microbiología
10.
Curr Opin Infect Dis ; 33(3): 244-250, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304470

RESUMEN

PURPOSE OF REVIEW: There is a global need for well tolerated, effective, and affordable vaccines to prevent group A streptococcal infections and their most serious complications. The aim of this review is to highlight the recent progress in the identification of promising vaccine antigens and new approaches to vaccine design that address the complexities of group A streptococcal pathogenesis and epidemiology. RECENT FINDINGS: Combination vaccines containing multiple shared, cross-protective antigens have proven efficacious in mouse and nonhuman primate models of infection. The development of complex multivalent M protein-based vaccines is continuing and several have progressed through early-stage human clinical trials. Formulations of vaccines containing universal T-cell epitopes, toll-like receptor agonists, and other adjuvants more potent than alum have been shown to enhance protective immunogenicity. Although the group A streptococcal vaccine antigen landscape is populated with a number of potential candidates, the clinical development of vaccines has been impeded by a number of factors. There are now concerted global efforts to raise awareness about the need for group A streptococcal vaccines and to support progress toward eventual commercialization and licensure. SUMMARY: Preclinical antigen discovery, vaccine formulation, and efficacy studies in animal models have progressed significantly in recent years. There is now a need to move promising candidates through the clinical development pathway to establish their efficacy in preventing group A streptococcal infections and their complications.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Adyuvantes Inmunológicos , Humanos , Inmunogenicidad Vacunal , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad
11.
Am J Pathol ; 189(10): 1913-1915, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421073

RESUMEN

This commentary highlights the article by Bernard et al that reports the role of rocA polymorphisms in the pathogenesis of Group A Streptococcus.


Asunto(s)
Infecciones Estreptocócicas , Transactivadores/genética , Humanos , Serogrupo , Streptococcus pyogenes
12.
FASEB J ; 33(10): 10808-10818, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31262188

RESUMEN

Colonization of the oropharynx is the initial step in Group A Streptococcus (GAS) pharyngeal infection. We have previously reported that the highly virulent M1T1 GAS clone attaches to oral epithelial cells via M1 protein interaction with blood group antigen carbohydrate structures. Here, we have identified that colonization of human oral epithelial cells by GAS serotypes M3 and M12 is mediated by human blood group antigens [ABO(H)] and Lewis (Le) antigen expression. Removal of linkage-specific fucose, galactose, N-acetylgalactosamine, and sialic acid modulated GAS colonization, dependent on host ABO(H) blood group and Le expression profile. Furthermore, N-linked glycans from human salivary glycoproteins, when released and purified, were potent inhibitors of M1, M3, and M12 GAS colonization ex vivo. These data highlight the important role played by human protein glycosylation patterns in GAS attachment to oral epithelial cell surfaces.-De Oliveira, D. M. P., Everest-Dass, A., Hartley-Tassell, L., Day, C. J., Indraratna, A., Brouwer, S., Cleary, A., Kautto, L., Gorman, J., Packer, N. H., Jennings, M. P., Walker, M. J., Sanderson-Smith, M. L. Human glycan expression patterns influence Group A streptococcal colonization of epithelial cells.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Polisacáridos/metabolismo , Streptococcus pyogenes/patogenicidad , Antígenos Bacterianos/fisiología , Adhesión Bacteriana/inmunología , Adhesión Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/fisiología , Antígenos de Grupos Sanguíneos/química , Proteínas Portadoras/fisiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glicosilación , Interacciones Microbiota-Huesped/inmunología , Humanos , Técnicas In Vitro , Polisacáridos/química , Polisacáridos/inmunología , Unión Proteica , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/inmunología , Proteínas y Péptidos Salivales/metabolismo , Infecciones Estreptocócicas/etiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/crecimiento & desarrollo , Streptococcus pyogenes/fisiología , Virulencia/fisiología
13.
Biochem J ; 476(3): 595-611, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30670571

RESUMEN

Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/farmacología , Manganeso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo , Estrés Oxidativo/genética , Streptococcus pyogenes/genética , Superóxido Dismutasa/genética
14.
Proc Natl Acad Sci U S A ; 114(26): 6818-6823, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28611214

RESUMEN

Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The cueR and copA genes are encoded on the chromosome typically as a divergent but contiguous operon. In Escherichia coli, cueR and copA are separated by two additional genes, ybaS and ybaT, which confer glutamine (Gln)-dependent acid tolerance and contribute to the glutamate (Glu)-dependent acid resistance system in this organism. Here we show that Cu strongly inhibits growth of a ∆copA mutant strain in acidic cultures. We further demonstrate that Cu stress impairs the pathway for Glu biosynthesis via glutamate synthase, leading to decreased intracellular levels of Glu. Addition of exogenous Glu rescues the ∆copA mutant from Cu stress in acidic conditions. Gln is also protective but this relies on the activities of YbaS and YbaT. Notably, expression of both enzymes is up-regulated during Cu stress. These results demonstrate a link between Cu stress, acid stress, and Glu/Gln metabolism, establish a role for YbaS and YbaT in Cu tolerance, and suggest that subtle changes in core metabolic pathways may contribute to overcoming host-imposed copper toxicity.


Asunto(s)
Cobre/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Glutámico/farmacología , Glutamina/farmacología , Estrés Fisiológico/efectos de los fármacos , Cobre/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Estrés Fisiológico/genética
15.
Clin Infect Dis ; 69(7): 1232-1234, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30721938

RESUMEN

Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended.


Asunto(s)
Escarlatina/epidemiología , Escarlatina/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Australia/epidemiología , Biología Computacional/métodos , Brotes de Enfermedades , Genoma Bacteriano , Genómica/métodos , Humanos , Filogenia , Vigilancia de la Población , Escarlatina/diagnóstico
16.
J Bacteriol ; 200(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378883

RESUMEN

Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Exotoxinas/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutagénesis , Neutrófilos/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Infect Immun ; 86(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581188

RESUMEN

Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (ΔadcA ΔadcAII) and export (ΔczcD) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens.


Asunto(s)
Streptococcus pyogenes/metabolismo , Zinc/metabolismo , Zinc/toxicidad , Animales , ADN Bacteriano , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Humanos , Complejo de Antígeno L1 de Leucocito/metabolismo , Lisosomas , Ratones , Ratones Transgénicos , Neutrófilos/fisiología , Plasminógeno/genética , Plasminógeno/metabolismo , Piel/citología , Piel/metabolismo , Piel/microbiología , Enfermedades Cutáneas Bacterianas/metabolismo , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad , Virulencia
18.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29915111

RESUMEN

Streptococcus agalactiae (group B Streptococcus [GBS]) causes disease in a wide range of animals. The serotype Ib lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial conspecifics. Here, we sequence genomes from 40 GBS isolates, including 25 isolates from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras, and compared them with 42 genomes from public databases. Phylogenetic analysis based on nonrecombinant core-genome single nucleotide polymorphisms (SNPs) indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core-genome SNPs indicates the dissemination of sequence type 261 (ST-261) from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pangenome analysis identified 1,440 genes as core, with the majority being dispensable or strain specific, with non-protein-coding intergenic regions (IGRs) divided among core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and for targets in vaccine development. The close relationship among recent ST-261 isolates from Ghana, the United States, and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS.IMPORTANCEStreptococcus agalactiae (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts, and serotype Ib is highly specialized to fish. Here, we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report here the variability in the polysaccharide capsule among this lineage but identify a cohort of common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade.


Asunto(s)
Enfermedades Transmisibles Importadas/veterinaria , Evolución Molecular , Enfermedades de los Peces/transmisión , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/genética , Tilapia/microbiología , Aclimatación , Animales , Acuicultura , Enfermedades Transmisibles Importadas/microbiología , Enfermedades de los Peces/microbiología , Microbiología de Alimentos , Genoma Bacteriano , Genotipo , Biología Marina , Filogenia , Polimorfismo de Nucleótido Simple , Queensland , Serogrupo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/transmisión , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/patogenicidad , Virulencia , Factores de Virulencia
19.
Cell Microbiol ; 19(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28778116

RESUMEN

Caveolae are composed of 2 major proteins, caveolin 1 (CAV1) and cavin 1 or polymerase transcript release factor I (CAVIN1). Here, we demonstrate that CAV1 levels modulate invasion of Group A Streptococcus (GAS) into nonphagocytic mammalian cells. GAS showed enhanced internalisation into CAV1-knockout mouse embryonic fibroblasts and CAV1 knockdown human epithelial HEp-2 cells, whereas overexpression of CAV1 in HEp-2 cells reduced GAS invasion. This effect was not dependent on the expression of the GAS fibronectin binding protein SfbI, which had previously been implicated in caveolae-mediated uptake. Nor was this effect dependent on CAVIN1, as knockout of CAVIN1 in mouse embryonic fibroblasts resulted in reduced GAS internalisation. Although CAV1 restricted GAS invasion into host cells, we observed only minimal association of invading GAS (strain M1T15448 ) with CAV1 by immunofluorescence and very low association of invading M1T15448 with caveolae by transmission electron microscopy. These observations suggest that physical interaction with caveolae is not needed for CAV1 restriction of invading GAS. An indirect mechanism of action is also consistent with the finding that changing membrane fluidity reverses the increased invasion observed in CAV1-null cells. Together, these results suggest that CAV1 protects host cells against GAS invasion by a caveola-independent mechanism.


Asunto(s)
Caveolina 1/metabolismo , Endocitosis , Células Epiteliales/inmunología , Fibroblastos/inmunología , Factores Inmunológicos/metabolismo , Streptococcus pyogenes/inmunología , Animales , Línea Celular , Células Epiteliales/microbiología , Fibroblastos/microbiología , Humanos , Ratones Noqueados
20.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373352

RESUMEN

Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA (PerR-regulated metal transporter A), a P1B-4-type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448ΔpmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448ΔpmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Estrés Oxidativo , Streptococcus pyogenes/enzimología , Adenosina Trifosfatasas/genética , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Humanos , Peróxido de Hidrógeno/farmacología , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Transgénicos , Mutación , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Estreptonigrina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA