Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 585(7826): 545-550, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968258

RESUMEN

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Bosques , Mapeo Geográfico , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Conservación de los Recursos Naturales , Recolección de Datos , Restauración y Remediación Ambiental , Calentamiento Global/prevención & control , Internacionalidad , Cinética
2.
Proc Natl Acad Sci U S A ; 119(23): e2111312119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639697

RESUMEN

Constraining the climate crisis requires urgent action to reduce anthropogenic emissions while simultaneously removing carbon dioxide from the atmosphere. Improved information about the maximum magnitude and spatial distribution of opportunities for additional land-based removals of CO2 is needed to guide on-the-ground decision-making about where to implement climate change mitigation strategies. Here, we present a globally consistent spatial dataset (approximately 500-m resolution) of current, potential, and unrealized potential carbon storage in woody plant biomass and soil organic matter. We also provide a framework for prioritizing actions related to the restoration, management, and maintenance of woody carbon stocks and associated soils. By comparing current to potential carbon storage, while excluding areas critical to food production and human habitation, we find 287 petagrams (PgC) of unrealized potential storage opportunity, of which 78% (224 PgC) is in biomass and 22% (63 PgC) is in soil. Improved management of existing forests may offer nearly three-fourths (206 PgC) of the total unrealized potential, with the majority (71%) concentrated in tropical ecosystems. However, climate change is a source of considerable uncertainty. While additional research is needed to understand the impact of natural disturbances and biophysical feedbacks, we project that the potential for additional carbon storage in woody biomass will increase (+17%) by 2050 despite projected decreases (−12%) in the tropics. Our results establish an absolute reference point and conceptual framework for national and jurisdictional prioritization of locations and actions to increase land-based carbon storage.


Asunto(s)
Carbono , Ecosistema , Secuestro de Carbono , Clima , Suelo
3.
Proc Natl Acad Sci U S A ; 117(6): 3015-3025, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988116

RESUMEN

Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances-processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region's carbon in 2016 but were responsible for just 10% (-130 MtC) of the net change (-1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (-434 MtC and -423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.


Asunto(s)
Carbono , Cambio Climático , Conservación de los Recursos Naturales , Bosque Lluvioso , Biomasa , Carbono/análisis , Carbono/química , Carbono/metabolismo , Ciclo del Carbono , Ríos
4.
Glob Chang Biol ; 26(8): 4357-4365, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32301542

RESUMEN

While improved management of agricultural landscapes is promoted as a promising natural climate solution, available estimates of the mitigation potential are based on coarse assessments of both agricultural extent and aboveground carbon density. Here we combine 30 meter resolution global maps of aboveground woody carbon, tree cover, and cropland extent, as well as a 1 km resolution map of global pasture land, to estimate the current and potential carbon storage of trees in nonforested portions of agricultural lands. We find that global croplands currently store 3.07 Pg of carbon (C) in aboveground woody biomass (i.e., trees) and pasture lands account for an additional 3.86 Pg C across a combined 3.76 billion ha. We then estimate the climate mitigation potential of multiple scenarios of integration and avoided loss of trees in crop and pasture lands based on region-specific biomass distributions. We evaluate our findings in the context of nationally determined contributions and find that the majority of potential carbon storage from integration and avoided loss of trees in crop and pasture lands is in countries that do not identify agroforestry as a climate mitigation technique.


Asunto(s)
Agricultura , Árboles , Biomasa , Carbono , Clima
5.
Glob Chang Biol ; 22(4): 1336-47, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26616240

RESUMEN

Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001-2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr(-1). Brazil did not sign the NYDF, yet from 2001 to 2013, Brazil ranks first for both carbon emissions from gross tropical deforestation and reductions in those emissions - its share of the total declined from a peak of 69% in 2003 to a low of 20% in 2012. Indonesia, an NYDF signatory, is the second highest emitter, peaking in 2012 at 0.362 Gt CO2 yr(-1) before declining to 0.205 Gt CO2 yr(-1) in 2013. The other 14 NYDF tropical country signatories were responsible for a combined average of 0.317 Gt CO2 yr(-1) , while the other 86 tropical country non-signatories were responsible for a combined average of 0.688 Gt CO2 yr(-1). We outline two scenarios for achieving the 50% emission reduction target by 2020, both emphasizing the critical role of Brazil and the need to reverse the trends of increasing carbon emissions from gross tropical deforestation in many other tropical countries that, from 2001 to 2013, have largely offset Brazil's reductions. Achieving the target will therefore be challenging, even though it is in the self-interest of the international community. Conserving rather than cutting down tropical forests requires shifting economic development away from a dependence on natural resource depletion toward recognition of the dependence of human societies on the natural capital that tropical forests represent and the goods and services they provide.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Clima Tropical
7.
Science ; 379(6630): eabp8622, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701452

RESUMEN

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Bosque Lluvioso , Biodiversidad , Ciclo del Carbono , Brasil
8.
PLoS One ; 16(7): e0245110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34252100

RESUMEN

Indigenous Territories (ITs) with less centralized forest governance than Protected Areas (PAs) may represent cost-effective natural climate solutions to meet the Paris agreement. However, the literature has been limited to examining the effect of ITs on deforestation, despite the influence of anthropogenic degradation. Thus, little is known about the temporal and spatial effect of allocating ITs on carbon stocks dynamics that account for losses from deforestation and degradation. Using Amazon Basin countries and Panama, this study aims to estimate the temporal and spatial effects of ITs and PAs on carbon stocks. To estimate the temporal effects, we use annual carbon density maps, matching analysis, and linear mixed models. Furthermore, we explore the spatial heterogeneity of these estimates through geographic discontinuity designs, allowing us to assess the spatial effect of ITs and PAs boundaries on carbon stocks. The temporal effects highlight that allocating ITs preserves carbon stocks and buffer losses as well as allocating PAs in Panama and Amazon Basin countries. The geographic discontinuity designs reveal that ITs' boundaries secure more extensive carbon stocks than their surroundings, and this difference tends to increase towards the least accessible areas, suggesting that indigenous land use in neotropical forests may have a temporarily and spatially stable impact on carbon stocks. Our findings imply that ITs in neotropical forests support Nationally Determined Contributions (NDCs) under the Paris Agreement. Thus, Indigenous peoples must become recipients of countries' results-based payments.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Geografía , Cambio Climático
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190126, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983330

RESUMEN

Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr-1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecosistema , Política Ambiental/legislación & jurisprudencia , Calentamiento Global/prevención & control , Calentamiento Global/legislación & jurisprudencia , Regulación Gubernamental
10.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120153, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23610164

RESUMEN

Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176,000 km(2) upper Xingu watershed (Mato Grosso, Brazil). We quantify recent land-use transitions and evaluate the influence of land management on streamwater temperature, an important determinant of habitat quality in small streams. By 2010, over 40 per cent of catchments outside protected areas were dominated (greater than 60% of area) by agriculture, with an estimated 10,000 impoundments in the upper Xingu. Streams in pasture and soya bean watersheds were significantly warmer than those in forested watersheds, with average daily maxima over 4°C higher in pasture and 3°C higher in soya bean. The upstream density of impoundments and riparian forest cover accounted for 43 per cent of the variation in temperature. Scaling up, our model suggests that management practices associated with recent agricultural expansion may have already increased headwater stream temperatures across the Xingu. Although increased temperatures could negatively impact stream biota, conserving or restoring riparian buffers could reduce predicted warming by as much as fivefold.


Asunto(s)
Agricultura/métodos , Ríos , Temperatura , Brasil , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Lluvia , Tecnología de Sensores Remotos , Estaciones del Año , Glycine max , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA