Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 121: 24-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34006455

RESUMEN

Male fertility requires the continual production of sperm by the process of spermatogenesis. This process requires the correct timing of regulatory signals to germ cells during each phase of their development. MicroRNAs (miRNAs) in germ cells and supporting Sertoli cells respond to regulatory signals and cause down- or upregulation of mRNAs and proteins required to produce proteins that act in various pathways to support spermatogenesis. The targets and functional consequences of altered miRNA expression in undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and Sertoli cells are discussed. Mechanisms are reviewed by which miRNAs contribute to decisions that promote spermatogonia stem cell self-renewal versus differentiation, entry into and progression through meiosis, differentiation of spermatids, as well as the regulation of Sertoli cell proliferation and differentiation. Also discussed are miRNA actions providing the very first signals for the differentiation of spermatogonia stem cells in a non-human primate model of puberty initiation.


Asunto(s)
MicroARNs/genética , Espermatogénesis/inmunología , Animales , Humanos , Masculino
2.
Semin Cell Dev Biol ; 121: 71-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119408

RESUMEN

Signaling by androgens through androgen receptor (AR) is essential to complete spermatogenesis in the testis. Similarly, loss of the main estrogen receptor, estrogen receptor 1 (ESR1; also known as ERα), results in male infertility, due in part to indirect deleterious effects on the seminiferous epithelium and spermatogenesis. Effects of steroid hormones are induced primarily through genomic changes induced by hormone-mediated activation of their intracellular receptors and subsequent effects on nuclear gene transcription. However, androgens and estrogens also signal through rapid nonclassical pathways involving actions initiated at the cell membrane. Here we review the data that nonclassical androgen and estrogen signaling pathways support processes essential for male fertility in the testis and reproductive tract. The recent development of transgenic mice lacking nonclassical AR or ESR1 signaling but retaining genomic nuclear signaling has provided a powerful tool to elucidate the function of nonclassical signaling in the overall response to androgens and estrogens. Results from these mice have emphasized that nonclassical signaling is essential for full responses to these hormones, and absence of either nonclassical or classical AR or ESR1 pathways produces abnormalities in spermatogenesis and the male reproductive tract. Although additional work is required to fully understand how classical and nonclassical receptor signaling synergize to produce full steroid hormone responses, here we summarize the known physiological functions of the classical and nonclassical androgen and estrogen signaling pathways in the testis and reproductive tract.


Asunto(s)
Andrógenos/metabolismo , Estrógenos/metabolismo , Espermatogénesis/genética , Animales , Masculino , Ratones , Ratones Transgénicos
3.
BMC Biol ; 20(1): 142, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705939

RESUMEN

BACKGROUND: Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS: Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS: Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.


Asunto(s)
Biología , Ritmo Circadiano , Animales , Reproducibilidad de los Resultados
4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769069

RESUMEN

Steroid hormones are capable of diffusing through cell membranes to bind with intracellular receptors to regulate numerous physiological processes. Three classes of steroid hormones, namely androgens, estrogens and glucocorticoids, contribute to the development of the reproductive system and the maintenance of fertility. During the past 30 years, mouse models have been produced in which the expression of genes encoding steroid hormone receptors has been enhanced, partially compromised or eliminated. These mouse models have revealed many of the physiological processes regulated by androgens, estrogens and to a more limited extent glucocorticoids in the testis and male accessory organs. In this review, advances provided by mouse models that have facilitated a better understanding of the molecular regulation of testis and reproductive tract processes by steroid hormones are discussed.


Asunto(s)
Andrógenos , Glucocorticoides , Ratones , Animales , Masculino , Andrógenos/metabolismo , Glucocorticoides/metabolismo , Testículo/metabolismo , Estrógenos/metabolismo , Esteroides/metabolismo , Modelos Animales de Enfermedad , Receptores Androgénicos/metabolismo
5.
Mol Psychiatry ; 25(5): 1080-1093, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138889

RESUMEN

The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1ß mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.


Asunto(s)
Depresión/etiología , Hipocampo/efectos de la radiación , Luz/efectos adversos , Iluminación/efectos adversos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Femenino , Hipocampo/metabolismo , Interleucina-1beta/genética , Masculino , Ratones , Factor A de Crecimiento Endotelial Vascular/genética
6.
Adv Exp Med Biol ; 1288: 175-203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453737

RESUMEN

Testosterone is essential for spermatogenesis and male fertility. In this review, topics related to testosterone control of spermatogenesis are covered including testosterone production and levels in the testis, classical and nonclassical testosterone signaling pathways, cell- and temporal-specific expression of the androgen receptor in the testis and autocrine and paracrine signaling of testis cells in the testis. Also discussed are the contributions of testosterone to testis descent, the blood-testis barrier, control of gonocyte numbers and spermatogonia expansion, completion of meiosis and attachment and release of elongaed spermatids. Testosterone-regulated genes identified in various mouse models of idsrupted Androgen receptor expression are discussed. Finally, examples of synergism and antagonism between androgen and follicle-stimulating hormone signaling pathways are summarized.


Asunto(s)
Andrógenos , Testículo , Animales , Hormona Folículo Estimulante , Masculino , Ratones , Receptores Androgénicos/genética , Espermátides , Espermatogénesis/genética , Testosterona
7.
Eur J Neurosci ; 52(9): 4139-4146, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32691462

RESUMEN

Circadian rhythms are endogenous biological cycles that synchronize physiology and behaviour to promote optimal function. These ~24-hr internal rhythms are set to precisely 24 hr daily by exposure to the sun. However, the prevalence of night-time lighting has the potential to dysregulate these biological functions. Hospital patients may be particularly vulnerable to the consequences of light at night because of their compromised physiological state. A mouse model of stroke (middle cerebral artery occlusion; MCAO) was used to test the hypothesis that exposure to dim light at night impairs responses to a major insult. Stroke lesion size was substantially larger among animals housed in dLAN after reperfusion than animals maintained in dark nights. Mice housed in dLAN for three days after the stroke displayed increased post-stroke anxiety-like behaviour. Overall, dLAN amplified pro-inflammatory pathways in the CNS, which may have exacerbated neuronal damage. Our results suggest that exposure to LAN is detrimental to stroke recovery.


Asunto(s)
Ritmo Circadiano , Accidente Cerebrovascular , Animales , Ansiedad , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas , Fotoperiodo
8.
Brain Behav Immun ; 89: 451-464, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735935

RESUMEN

Breast cancer survivors receiving chemotherapy often report increased anxiety and depression. However, the mechanism underlying chemotherapy-induced changes in affect remains unknown. We hypothesized that chemotherapy increases cytokine production, in turn altering exploratory and depressive-like behavior. To test this hypothesis, female Balb/C mice received two injections, separated by two weeks, of vehicle (0.9% saline) or a chemotherapeutic cocktail [9 mg/kg doxorubicin (A) and 90 mg/kg cyclophosphamide (C)]. Peripheral and central cytokine concentrations were increased one and seven days, respectively, after AC. Because of the beneficial effects of social enrichment on several diseases with inflammatory components, we examined whether social enrichment could attenuate the increase in peripheral and central cytokine production following chemotherapy administration. Socially isolated mice receiving AC therapy demonstrated increased depressive-like and exploratory behaviors with a concurrent increase in hippocampal IL-6. Whereas, group housing attenuated AC-induced IL-6 and depressive-like behavior. Next, we sought to determine whether central oxytocin may contribute to the protective effects of social housing after AC administration. Intracerebroventricular administration of oxytocin to socially isolated mice recapitulated the protective effects of social enrichment; specifically, oxytocin ameliorated the AC-induced effects on IL-6 and depressive-like behavior. Furthermore, administration of an oxytocin antagonist to group housed mice recapitulated the responses of socially isolated mice; specifically, AC increased depressive-like behavior and central IL-6. These data suggest a possible neuroprotective role for oxytocin following chemotherapy, via modulation of IL-6. This study adds to the growing literature detailing the negative behavioral effects of chemotherapy and provides further evidence that social enrichment may be beneficial to health.


Asunto(s)
Antineoplásicos , Oxitocina , Animales , Conducta Animal , Citocinas , Conducta Exploratoria , Femenino , Ratones , Ratones Endogámicos BALB C , Conducta Social
9.
J Immunol ; 200(2): 681-687, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29203514

RESUMEN

An important entraining signal for the endogenous circadian clock, independent of light, is food intake. The circadian and immune systems are linked; forced desynchrony of the circadian clock via nighttime light exposure or genetic ablation of core clock components impairs immune function. The timing of food intake affects various aspects of the circadian clock, but its effects on immune function are unknown. We tested the hypothesis that temporal desynchrony of food intake alters innate immune responses. Adult male Swiss Webster mice were provided with food during the night, the day, or ad libitum for 4 wk, followed by administration of LPS prior to the onset of either the active phase (zeitgeber time [ZT]12: Experiment 1) or the inactive phase (ZT0: Experiment 2). Three hours after LPS administration, blood was collected, and serum was tested for bacteria-killing capacity against Escherichia coli, as a functional assay of immune function. Additionally, cytokine expression was examined in the serum (protein), spleen, and hypothalamus (mRNA). Day-fed mice suppressed bacteria-killing capacity and serum cytokine responses to LPS during the active phase (ZT12). Night-fed mice increased bactericidal capacity, as well as serum and hypothalamic mRNA responses of certain proinflammatory cytokines during the active phase. Only day-fed mice enhanced serum cytokine responses when LPS challenge occurred during the inactive phase (ZT0); this did not result in enhanced bactericidal capacity. These data suggest that mistimed feeding has functional relevance for immune function and provide further evidence for the integration of the circadian, metabolic, and immune systems.


Asunto(s)
Relojes Circadianos , Endotoxinas/inmunología , Conducta Alimentaria , Inmunidad Innata , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Citocinas/sangre , Citocinas/metabolismo , Endotoxinas/administración & dosificación , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Masculino , Ratones , Viabilidad Microbiana/inmunología , Especificidad de Órganos/inmunología , Factores de Tiempo
10.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302582

RESUMEN

For many individuals in industrialized nations, the widespread adoption of electric lighting has dramatically affected the circadian organization of physiology and behavior. Although initially assumed to be innocuous, exposure to artificial light at night (ALAN) is associated with several disorders, including increased incidence of cancer, metabolic disorders, and mood disorders. Within this review, we present a brief overview of the molecular circadian clock system and the importance of maintaining fidelity to bright days and dark nights. We describe the interrelation between core clock genes and the cell cycle, as well as the contribution of clock genes to oncogenesis. Next, we review the clinical implications of disrupted circadian rhythms on cancer, followed by a section on the foundational science literature on the effects of light at night and cancer. Finally, we provide some strategies for mitigation of disrupted circadian rhythms to improve health.


Asunto(s)
Carcinogénesis/metabolismo , Ritmo Circadiano , Neoplasias/epidemiología , Animales , Carcinogénesis/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Humanos , Neoplasias/etiología , Horario de Trabajo por Turnos/efectos adversos
11.
Mol Hum Reprod ; 25(3): 124-136, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590698

RESUMEN

Molecular mechanisms responsible for the initiation of primate spermatogenesis remain poorly characterized. Previously, 48 h stimulation of the testes of three juvenile rhesus monkeys with pulsatile LH and FSH resulted in down-regulation of a cohort of genes recognized to favor spermatogonia stem cell renewal. This change in genetic landscape occurred in concert with amplification of Sertoli cell proliferation and the commitment of undifferentiated spermatogonia to differentiate. In this report, the non-protein coding small RNA transcriptomes of the same testes were characterized using RNA sequencing: 537 mature micro-RNAs (miRNAs), 322 small nucleolar RNAs (snoRNAs) and 49 small nuclear RNAs (snRNAs) were identified. Pathway analysis of the 20 most highly expressed miRNAs suggested that these transcripts contribute to limiting the proliferation of the primate Sertoli cell during juvenile development. Gonadotrophin treatment resulted in differential expression of 35 miRNAs, 12 snoRNAs and four snRNA transcripts. Ten differentially expressed miRNAs were derived from the imprinted delta-like homolog 1-iodothyronine deiodinase 3 (DLK1-DIO3) locus that is linked to stem cell fate decisions. Four gonadotrophin-regulated expressed miRNAs were predicted to trigger a local increase in thyroid hormone activity within the juvenile testis. The latter finding leads us to predict that, in primates, a gonadotrophin-induced selective increase in testicular thyroid hormone activity, together with the established increase in androgen levels, at the onset of puberty is necessary for the normal timing of Sertoli cell maturation, and therefore initiation of spermatogenesis. Further examination of this hypothesis requires that peripubertal changes in thyroid hormone activity of the testis of a representative higher primate be determined empirically.


Asunto(s)
MicroARNs/metabolismo , Testículo/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismo , Macaca mulatta , Masculino , MicroARNs/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología , Espermatogénesis/genética , Espermatogénesis/fisiología , Transcriptoma/genética
12.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174326

RESUMEN

Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.


Asunto(s)
Citocinas/metabolismo , Neoplasias/complicaciones , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Animales , Ritmo Circadiano , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Trastornos del Inicio y del Mantenimiento del Sueño/genética
13.
Semin Cell Dev Biol ; 59: 27-34, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26805442

RESUMEN

PTPN11 (also known as SHP2) is a ubiquitously expressed non-receptor tyrosine phosphatase that regulates cell survival, proliferation, differentiation, migration and adhesion. Naturally occurring mutations in the PTPN11 gene cause Noonan and LEOPARD syndromes, two genetic disorders that are characterized by a spectrum of defects including male infertility. This review summarizes four cellular and molecular mechanisms by which PTPN11 acts to support male fertility. First, PTPN11 is required for the proliferation and survival of spermatogonial stem cells (SSCs) that are essential to replenish the germ cells that will become sperm. Second, PTPN11 regulation of cellular adhesion functions in Sertoli cells is required to maintain the blood-testis barrier (BTB) that protects meiotic and post-meiotic germ cells. Third, expression of PTPN11 in Sertoli cells is essential to prevent premature differentiation and exhaustion of the SSC population and to maintain the SSC niche. Finally, in Leydig cells, PTPN11 supports mitochondrial fusion and the expression of acyl-CoA synthetase (ACSL4) needed for the production of steroids including testosterone, which is required for fertility.


Asunto(s)
Fertilidad , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Humanos , Masculino , Modelos Biológicos , Espermatogénesis , Espermatozoides/citología , Espermatozoides/enzimología , Testículo/enzimología
14.
Hum Reprod ; 32(10): 2088-2100, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938749

RESUMEN

STUDY QUESTION: What is the genetic landscape within the testis of the juvenile rhesus monkey (Macaca mulatta) that underlies the decision of undifferentiated spermatogonia to commit to a pathway of differentiation when puberty is induced prematurely by exogenous LH and FSH stimulation? SUMMARY ANSWER: Forty-eight hours of gonadotrophin stimulation of the juvenile monkey testis resulted in the appearance of differentiating B spermatogonia and the emergence of 1362 up-regulated and 225 down-regulated testicular mRNAs encoding a complex network of proteins ranging from enzymes regulating Leydig cell steroidogenesis to membrane receptors, and from juxtacrine and paracrine factors to transcriptional factors governing spermatogonial stem cell fate. WHAT IS KNOWN ALREADY: Our understanding of the cell and molecular biology underlying the fate of undifferentiated spermatogonia is based largely on studies of rodents, particularly of mice, but in the case of primates very little is known. The present study represents the first attempt to comprehensively address this question in a highly evolved primate. STUDY DESIGN, SIZE, DURATION: Global gene expression in the testis from juvenile rhesus monkeys that had been stimulated with recombinant monkey LH and FSH for 48 h (N = 3) or 96 h (N = 4) was compared to that from vehicle treated animals (N = 3). Testicular cell types and testosterone secretion were also monitored. PARTICIPANTS/MATERIALS, SETTING, METHODS: Precocious testicular puberty was initiated in juvenile rhesus monkeys, 14-24 months of age, using a physiologic mode of intermittent stimulation with i.v. recombinant monkey LH and FSH that within 48 h produced 'adult' levels of circulating LH, FSH and testosterone. Mitotic activity was monitored by immunohistochemical assays of 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine incorporation. Animals were bilaterally castrated and RNA was extracted from the right testis. Global gene expression was determined using RNA-Seq. Differentially expressed genes (DEGs) were identified and evaluated by pathway analysis. mRNAs of particular interest were also quantitated using quantitative RT-PCR. Fractions of the left testis were used for histochemistry or immunoflouresence. MAIN RESULTS AND THE ROLE OF CHANCE: Differentiating type B spematogonia were observed after both 48 and 96 h of gonadotrophin stimulation. Pathway analysis identified five super categories of over-represented DEGs. Repression of GFRA1 (glial cell line-derived neurotrophic factor family receptor alpha 1) and NANOS2 (nanos C2HC-type zinc finger 2) that favor spermatogonial stem cell renewal was noted after 48 and 96 h of LH and FSH stimulation. Additionally, changes in expression of numerous genes involved in regulating the Notch pathway, cell adhesion, structural plasticity and modulating the immune system were observed. Induction of genes associated with the differentiation of spermatogonia stem cells (SOHLH1(spermatogenesis- and oogenesis-specific basic helix-loop-helix 1), SOHLH2 and KIT (V-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)) was not observed. Expression of the gene encoding STRA8 (stimulated by retinoic acid 8), a protein generally considered to mark activation of retinoic acid signaling, was below our limit of detection. LARGE SCALE DATA: The entire mRNA data set for vehicle and gonadotrophin treated animals (N = 10) has been deposited in the GEO-NCBI repository (GSE97786). LIMITATIONS REASONS FOR CAUTION: The limited number of monkeys per group and the dilution of low abundance germ cell transcripts by mRNAs contributed from somatic cells likely resulted in an underestimation of the number of differentially expressed germ cell genes. WIDER IMPLICATIONS OF THE FINDINGS: The findings that expression of GDNF (a major promoter of spermatogonial stem cell renewal) was not detected in the control juvenile testes, expression of SOHLH1, SOHLH2 and KIT, promoters of spermatogonial differentiation in mice, were not up-regulated in association with the gonadotrophin-induced generation of differentiating spermatogonia, and that robust activation of the retinoic acid signaling pathway was not observed, could not have been predicted. These unexpected results underline the importance of non-human primate models in translating data derived from animal research to the human situation. STUDY FUNDING/COMPETING INTEREST(S): The work described was funded by NIH grant R01 HD072189 to T.M.P. P.A. was supported by an Endocrine Society Summer Research Fellowship Award and CONICET (Argentine Research Council), S.N. by a grant from Vali-e-Asr Reproductive Health Research Center of Tehran University of Medical Sciences (grant #24335-39-92) to Dr Batool Hosseini Rashidi, and M.P.H. by grants from the National Health and Medical Research Council of Australia, and the Victorian State Government's Operational Infrastructure Support Program. The authors have nothing to disclose.


Asunto(s)
Gonadotropinas/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo , Transcriptoma , Animales , Hormona Folículo Estimulante/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Modelos Animales , ARN Mensajero/metabolismo , Maduración Sexual/genética , Maduración Sexual/fisiología , Espermatogénesis/genética , Espermatogonias/citología , Testículo/citología , Testosterona/metabolismo
15.
Semin Cell Dev Biol ; 30: 2-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24598768

RESUMEN

Testosterone is essential for maintaining spermatogenesis and male fertility. However, the molecular mechanisms by which testosterone acts have not begun to be revealed until recently. With the advances obtained from the use of transgenic mice lacking or overexpressing the androgen receptor, the cell specific targets of testosterone action as well as the genes and signaling pathways that are regulated by testosterone are being identified. In this review, the critical steps of spermatogenesis that are regulated by testosterone are discussed as well as the intracellular signaling pathways by which testosterone acts. We also review the functional information that has been obtained from the knock out of the androgen receptor from specific cell types in the testis and the genes found to be regulated after altering testosterone levels or androgen receptor expression.


Asunto(s)
Andrógenos/fisiología , Espermatogénesis , Testosterona/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Masculino , Meiosis , Receptores Androgénicos/metabolismo , Transducción de Señal , Testículo/citología , Testículo/fisiología
16.
Biol Reprod ; 94(1): 11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26607719

RESUMEN

Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.


Asunto(s)
Transducción de Señal/fisiología , Espermatogénesis/fisiología , Testosterona/fisiología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Fertilidad/efectos de los fármacos , Fertilidad/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Proteínas Proto-Oncogénicas c-kit/genética , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética , Células de Sertoli/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Testículo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Stem Cells ; 32(3): 741-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24123360

RESUMEN

SHP2 is a widely expressed protein tyrosine phosphatase required for signal transduction from multiple cell surface receptors. Gain and loss of function SHP2 mutations in humans are known to cause Noonan and LEOPARD syndromes, respectively, that are characterized by numerous pathological conditions including male infertility. Using conditional gene targeting in the mouse, we found that SHP2 is required for maintaining spermatogonial stem cells (SSCs) and the production of germ cells required for male fertility. After deleting SHP2, spermatogenesis was halted at the initial step during which transit-amplifying undifferentiated spermatogonia are produced from SSCs. In the absence of SHP2, proliferation of SSCs and undifferentiated spermatogonia was inhibited, thus germ cells cannot be replenished and SSCs cannot undergo renewal. However, germ cells beyond the undifferentiated spermatogonia stage of development at the time of SHP2 knockout were able to complete their maturation to become sperm. In cultures of SSCs and their progeny, inhibition of SHP2 activity reduced growth factor-mediated intracellular signaling that regulates SSC proliferation and cell fate. Inhibition of SHP2 also decreased the number of SSCs present in culture and caused SSCs to detach from supporting cells. Injection of mice with an SHP2 inhibitor blocked the production of germ cells from SSCs. Together, our studies show that SHP2 is essential for SSCs to maintain fertility and indicates that the pathogenesis of infertility in humans with SHP2 mutations is due to compromised SSC functions that block spermatogenesis.


Asunto(s)
Fertilidad , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Espermatogonias/citología , Espermatogonias/enzimología , Células Madre/citología , Células Madre/enzimología , Envejecimiento , Animales , Adhesión Celular , Recuento de Células , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Eliminación de Gen , Humanos , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Transducción de Señal , Espermatogénesis
18.
Sci Rep ; 14(1): 848, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191908

RESUMEN

Despite its demonstrated biological significance, time of day is a broadly overlooked biological variable in preclinical and clinical studies. How time of day affects the influence of peripheral tumors on central (brain) function remains unspecified. Thus, we tested the hypothesis that peripheral mammary cancer tumors alter the transcriptome of immune responses in the brain and that these responses vary based on time of day; we predicted that time of day sampling bias would alter the interpretation of the results. Brain tissues collected at mid dark and mid light from mammary tumor-bearing and vehicle injected mice were analyzed using the Nanostring nCounter immune panel. Peripheral mammary tumors significantly affected expression within the brain of over 100 unique genes of the 770 represented in the panel, and fewer than 25% of these genes were affected similarly across the day. Indeed, between 65 and 75% of GO biological processes represented by the differentially expressed genes were dependent upon time of day of sampling. The implications of time-of-day sampling bias in interpretation of research studies cannot be understated. We encourage considering time of day as a significant biological variable in studies and to appropriately control for it and clearly report time of day in findings.


Asunto(s)
Neoplasias Mamarias Animales , Animales , Ratones , Sesgo , Sesgo de Selección , Neoplasias Mamarias Animales/genética , Encéfalo , Transcriptoma
19.
Sci Rep ; 14(1): 7760, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565934

RESUMEN

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Asunto(s)
Ritmo Circadiano , Demencia Vascular , Animales , Ratones , Masculino , Femenino , Ritmo Circadiano/fisiología , Fotoperiodo , Reconocimiento en Psicología , Demencia Vascular/etiología , Cognición
20.
Exp Neurol ; 377: 114796, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677449

RESUMEN

Circadian rhythms are endogenous biological cycles that regulate physiology and behavior and are set to precisely 24-h by light exposure. Light at night (LAN) dysregulates physiology and function including immune response; a critical component that contributes to stroke pathophysiological progression of neuronal injury and may impair recovery from injury. The goal of this study is to explore the effects of dim LAN (dLAN) in a murine model of ischemic stroke to assess how nighttime lighting from hospital settings can affect stroke outcome. Further, this study sought to identify mechanisms underlying pathophysiological changes to immune response after circadian disruption. Male and female adult Swiss Webster (CFW) mice were subjected to transient or permanent focal cerebral ischemia, then were subsequently placed into either dark night conditions (LD) or one night of dLAN (5 lx). 24 h post-stroke, sensorimotor impairments and infarct sizes were quantified. A single night of dLAN following MCAO increased infarct size and sensorimotor deficits across both sexes and reduced survival in males after 24 h. Flow cytometry was performed to assess microglial phenotypes after MCAO, and revealed that dLAN altered the percentage of microglia that express pro-inflammatory markers (MHC II+ and IL-6) and microglia that express CD206 and IL-10 that likely contributed to poor ischemic outcomes. Following these results, microglia were reduced in the brain using Plexxikon 5622 (PLX 5622) a CSFR1 inhibitor, then the mice received an MCAO and were exposed to LD or dLAN conditions for 24 h. Microglial depletion by PLX5622 resulted in infarct sizes that were comparable between lighting conditions. This study provides supporting evidence that environmental lighting exacerbates ischemic injury and post-stroke mortality by a biological mechanism that exposure to dLAN causes a fundamental shift of activated microglial phenotypes from beneficial to detrimental at an early time point after stroke, resulting in irreversible neuronal death.


Asunto(s)
Accidente Cerebrovascular Isquémico , Microglía , Animales , Microglía/patología , Microglía/metabolismo , Ratones , Masculino , Femenino , Accidente Cerebrovascular Isquémico/patología , Luz/efectos adversos , Ritmo Circadiano/fisiología , Isquemia Encefálica/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA