Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Inorg Chem ; 56(21): 13553-13561, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29039922

RESUMEN

Production of certified reference materials in support of domestic nuclear forensics programs require volatile precursors for introduction into electromagnetic isotopic separation instruments. ß-Diketone chelates of tetravalent actinides are known for their high volatility, but previously developed synthetic approaches require starting material (NpCl4) that is prohibitively difficult and hazardous to prepare. An alternative strategy was developed here that uses controlled potential electrolysis to reduce neptunium to the tetravalent state in submolar concentrations of hydrochloric acid. Four different ß-diketone ligands of varying degrees of fluorination were reacted with an aqueous solution of Np4+. Products of this reaction were characterized via X-ray diffraction and infrared spectroscopy, and were found to be neutral 8-coordinate complexes that adopt square antiprismatic crystal geometry. Synthesis of Np ß-diketonates by this approach circumvents the necessity of using NpCl4 in tetravalent Np coordination compound synthesis. The volatility of the complexes was assessed using thermogravimetric analysis, where the temperature of sublimation was determined to be in the range of 180° to 205 °C. The extent of fluorination did not appreciably alter the sublimation temperature of the complex. Thermal decomposition of these compounds was not observed during sublimation. High volatility and thermal stability of Np ß-diketonates make them ideal candidates for gaseous introduction into isotopic separation instruments.

2.
Inorg Chem ; 56(5): 2533-2544, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28221786

RESUMEN

Insight into the solid-state chemistry of pure technetium-99 (99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO4-. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO4 is orthorhombic while that of RbTcO4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.

3.
Inorg Chem ; 53(23): 12315-22, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25390284

RESUMEN

Platinum group metals (PGMs), including rhodium, generated by the fission of (235)U are present in significant quantities within spent nuclear fuel located on power generation sites in the United States, the amount of which is expected to exceed natural reserves by 2030. Yet, spent fuel raffinates are highly acidic media that may result in complex speciation of the PGM. This work provides an understanding of Rh(III) speciation up to 9 M HCl and HNO3, and utilizes a combination of ultraviolet-visible (UV-vis) and capillary zone electrophoresis data, along with computationally predicted thermochemistry and simulated UV-vis spectra to approximate the relative concentrations of potential species in solution as a function of acid concentration. One Rh(III) species, [Rh(NO3)3], is observed under all conditions in HNO3 and for Rh(III) concentrations smaller than 10(-3) M. In contrast, a variety of chloridated Rh(III) species may exist simultaneously in a HCl medium. The species [RhCl2(H2O)4](+) and [RhCl3(H2O)3] are observed in HCl solutions of concentrations ranging from 0 to 1 M; the species [RhCl4(H2O)2](-), [RhCl5(H2O)](2-), and [Rh2Cl9](3-) are observed between 2 and 9 M HCl.

4.
Environ Sci Technol ; 45(11): 4771-7, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21539349

RESUMEN

Technetium-99 (Tc) in nuclear waste is a significant environmental concern due to its long half-life and high mobility in the subsurface. Reductive precipitation of technetium(IV) oxides [TcO(2)(s)] is an effective means of immobilizing Tc, thereby impeding its migration in groundwater. However, technetium(IV) oxides are subject to dissolution by oxidants and/or complexing agents. In this study we ascertain the effects of a synthetic organic ligand, ethylenediaminetetraacetate (EDTA), and two natural humic isolates on the dissolution and solubility of technetium(IV) oxides. Pure synthetic technetium(IV) oxide (0.23 mM) was used in batch experiments to determine dissolution kinetics at pH ∼6 under both reducing and oxidizing conditions. All organic ligands were found to enhance the dissolution of technetium(IV) oxides, increasing their solubility from ∼10(-8) M (without ligands) to 4 × 10(-7) M under strictly anoxic conditions. Reduced Tc(IV) was also found to reoxidize rapidly under oxic conditions, with an observed oxidative dissolution rate approximately an order of magnitude higher than that of ligand-promoted dissolution under reducing conditions. Significantly, oxidative dissolution was inhibited by EDTA but enhanced by humic acid compared to experiments without any complexing agents. The redox functional properties of humics, capable of facilitating intramolecular electron transfer, may account for this increased oxidation rate under oxic conditions. Our results highlight the importance of complex interactions for the stability and mobility of Tc and thus for the long-term fate of Tc in contaminated environments.


Asunto(s)
Contaminantes Radiactivos/química , Compuestos de Tecnecio/química , Anaerobiosis , Ligandos , Compuestos Orgánicos/química , Oxidación-Reducción
5.
Environ Sci Technol ; 45(7): 2718-24, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21366306

RESUMEN

To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logß1,-1,1 and logß1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range.


Asunto(s)
Sustancias Húmicas/análisis , Contaminantes Radiactivos del Suelo/química , Tecnecio/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar
6.
Artículo en Inglés | MEDLINE | ID: mdl-34305495

RESUMEN

Electroprecipitation can be used to preconcentrate lanthanum on carbon electrode surfaces. The use of complexing ligands is expected to improve the electroprecipitation of lanthanum by protecting La ions in solution from the alkaline region near the electrode surface. However, the electroprecipitation mechanism of La in the presence of a complexing ligand is not known. The goal of this work is to 1) determine the effect of the complexing ligand, α-hydroxy isobutyric acid (HIBA), on the electroprecipitation of La onto the gold electrodes, and 2) identify the changes in the mechanism of accumulation when preconcentrating in the presence of HIBA. We used an electrochemical quartz crystal microbalance (eQCM) and needle type pH microelectrodes to determine pH near the electrode surface in combination with cyclic voltammetry to understand the electroprecipitation mechanism. We used the bi-dentate ligand HIBA as a ligand and found that lanthanum electroprecipitation is hindered in the presence of HIBA. The presence of HIBA also delayed the onset of film formation during a cyclic voltammetric experiment by ~100 mV compared to experiments performed without HIBA. The shift in onset potential is attributed to the buffering action of HIBA (pKa = 3.7) since the shift is not present in subsequent scans. The precipitated film was characterized by scanning electron microscopy, X-ray photoelectron spectrometry, and Auger nanoprobe spectrometry. While we found that La(OH)3 was the predominant chemical state of the film on electrodes in the absence of HIBA, La2O3 was found for films created in the presence of HIBA. Our finding demonstrates that La(OH)3 can be electrodeposited at room temperature.

7.
J Radioanal Nucl Chem ; 324(3): 1021-1030, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32601515

RESUMEN

Microliter volumes are used in electrochemical detection and preconcentration of radionuclides to reduce the dose received by researchers and equipment. Unfortunately, there is a lack of analysis of radionuclides with coupled electrochemical techniques and microliter volume reactors. The goals of this work are 1) to develop a miniaturized micro-electrochemical quartz crystal microbalance (µeQCM) reactor for use in small volume (50-200 µL) electrogravimetric experiments and 2) to use this reactor to characterize the preconcentration of neptunium on carbon electrodes via electroprecipitation. We successfully deposited neptunium in the new µeQCM reactor and verified its operation. We found that preconcentration of neptunium on carbon coated electrodes was possible by chronoamperometry at -1.6 VAg/AgCl. The mass shift of the resulting precipitate was indicative of the amount of neptunium on the electrode, although the correlation between the mass increase and activity of the preconcentrated material was not linear. Neptunium precipitate reduced electron transfer to the solution as evidenced by the increase in charge transfer resistance compared to bare electrodes.

8.
ACS Omega ; 4(15): 16257-16269, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31616803

RESUMEN

During the processes associated with glass corrosion, porous hydrated glass alteration layers typically form upon exposure to aqueous conditions for extended time periods. The impacts of the alteration layer on glass durability have not been agreed upon in the glass science community. In particular, the formation mechanisms of hydrated glass alteration layers are still largely unknown and require further investigation, but these layers often require months to years to develop and are often too thin to adequately characterize. Meanwhile, sol-gel-derived silicate gels are relatively easy to synthesize in bulk with custom compositions relevant to hydrated glass alteration layers. If alteration layers and synthetic silicate gels demonstrate physical and chemical properties that are sufficiently similar, synthetic silicate gels could be used as analogues for hydrated glass alteration layers in future studies. However, synthetic gels must first be prepared and evaluated before comparisons between glass alteration layers and synthetic silicate gels can be made. This work focuses entirely on the synthesis and observed physical properties of synthetic silicate gels. A future work will compare the characteristics of synthetic gels described in this work with altered waste glass formed in similar pH environments. In this study, synthetic gels were made with custom compositions at various pH values to evaluate the effect of pH on gel structure and morphology. Several other variables were examined also, such as composition, drying, and aging. Gels were produced by sequential additions of organometallic precursors in a single container. Gels were analyzed with several techniques including small-angle X-ray scattering, gas adsorption, and He pycnometry to determine the effects of the variables on physical properties. Results show that gels prepared at pH 3 consistently contained fewer primary particles with diameters larger than 7.2 nm and fewer pores with diameters larger than 30 nm compared to gels synthesized at pH 7 and 9. Composition was shown to have no discernable effect on primary particle and pore sizes at any pH.

9.
Dalton Trans ; 44(32): 14376-87, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26200662

RESUMEN

The tetradentate N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) ligand with hard-soft donor atoms has been demonstrated to be promising for the group separation of actinides from highly acidic nuclear wastes. To identify the formed complexes of this ligand with actinides and lanthanides, electrospray ionization mass spectrometry (ESI-MS) combined with density functional theory (DFT) calculations was used to probe the possible complexation processes. The 1 : 2 Eu-L species ([EuL2(NO3)](2+)) can be observed in ESI-MS at low metal-to-ligand ([M]/[L]) ratios, whereas the 1 : 1 Eu-L species ([EuL(NO3)2](+)) can be observed when the [M]/[L] ratio is higher than 1.0. However, ([UO2L(NO3)](+)) is the only detected species for the uranyl complexes. The [ThL2(NO3)2](2+) species can be observed at low [M]/[L] ratios; the 1 : 2 species ([ThL2(NO3)](3+)) and a new 1 : 1 species ([ThL(NO3)3](+)) can be detected at high [M]/[L] ratios. Collision-induced dissociation (CID) results showed that Et-Tol-DAPhen ligands can coordinate strongly with metal ions, and the coordination moieties remain intact under CID conditions. Natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF), atoms in molecules (AIM) and molecular orbital (MO) analyses indicated that the metal-ligand bonds of the actinide complexes exhibited more covalent character than those of the lanthanide complexes. In addition, according to thermodynamic analysis, the stable cationic M-L complexes in acetonitrile are found to be in good agreement with the ESI-MS results.


Asunto(s)
Acetonitrilos/química , Amidas/química , Europio/química , Compuestos Organometálicos/química , Fenantrolinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Torio/química , Uranio/química , Modelos Moleculares , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA