Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Indoor Air ; 32(9): e13105, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36168225

RESUMEN

Low-cost monitors have made it possible for the first time to measure indoor PM2.5 concentrations over extended periods of time (months to years). Coupled with concurrent outdoor measurements, these indoor measurements can be divided into particles entering the building from outdoors and particles generated from indoor activities. Indoor-generated particles are not normally considered in epidemiological studies, but they can have health effects (e.g., passive smoking and high-temperature cooking). We employed The Random Component Superposition (RCS) regression model to estimate infiltration factors for up to 790 000 matched indoor and outdoor sites. The median infiltration factors for subgroups in the 3-state region ranged between 0.22 and 0.24, with an interquartile range (IQR) of 0.13-0.40. These infiltration factors allowed calculation of both the indoor-generated and outdoor-infiltrated PM2.5 . Indoor-generated particles contributed, on average, 46%-52% of total indoor PM2.5 concentrations. However, the site-specific fractional contribution of these indoor sources to total indoor PM2.5 ranged from near-zero to nearly 100%. The influence of indoor-generated particles on potential exposures varied widely relative to outdoor concentrations. The greatest influence of indoor-generated particles occurred at low-to-moderate daily mean outdoor PM2.5 levels around 6 µg/m3 and was negligible at outdoor concentrations >20 µg/m3 . Epidemiological studies incorporating only estimated exposures due to the particles of ambient origin may benefit from the newly available knowledge of long-term indoor-generated particle concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación por Humo de Tabaco , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Oregon , Tamaño de la Partícula , Material Particulado/análisis , Washingtón
2.
Environ Sci Technol ; 51(3): 1140-1146, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27997143

RESUMEN

Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.


Asunto(s)
Contaminación del Aire Interior , Vivienda , Contaminantes Atmosféricos , Culinaria , Calefacción , Compuestos Orgánicos , Tamaño de la Partícula
3.
Environ Sci Technol ; 50(18): 10031-8, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27181617

RESUMEN

Indoor ultrafine particles (UFP, <100 nm) released from combustion and consumer products lead to elevated human exposure to UFP. UFP emitted from the sources undergo aerosol transformation processes such as coagulation and deposition. The coagulation effect can be significant during the source emission due to high concentration and high mobility of nanosize particles. However, few studies have estimated size-resolved UFP source emission strengths while considering coagulation in their theoretical and experimental research work. The primary objective of this study is to characterize UFP source strength by considering coagulation in addition to other indoor processes (i.e., deposition and ventilation) in a realistic setting. A secondary objective is to test a hypothesis that size-resolved UFP source emission rates are unimodal and log-normally distributed for three common indoor UFP sources: an electric stove, a natural gas burner, and a paraffin wax candle. Experimental investigations were performed in a full-scale test building. Size- and time-resolved concentrations of UFP ranging from 2 to 100 nm were monitored using a scanning mobility particle sizer (SMPS). Based on the temporal evolution of the particle size distribution during the source emission period, the size-dependent source emission rate was determined using a material-balance modeling approach. The results indicate that, for a given UFP source, the source strength varies with particle size and source type. The analytical model assuming a log-normally distributed source emission rate could predict the temporal evolution of the particle size distribution with reasonable accuracy for the gas stove and the candle. Including the effect of coagulation was found to increase the estimates of source strengths by up to a factor of 8. This result implies that previous studies on indoor UFP source strengths considering only deposition and ventilation might have largely underestimated the true values of UFP source strengths, especially for combustion due to the natural gas stove and the candle.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Ventilación
4.
Environ Sci Technol ; 49(11): 6419-29, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26000896

RESUMEN

Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 µg/m(3) (interquartile range, IQR = 0.8-6.1 µg/m(3)) and 3.3 µg/m(3) (IQR = 1.5-6.9 µg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 µg/m(3), IQR = 2.4-8.6 µg/m(3)) and outdoor (median 4.3 µg/m(3), IQR = 2.6-7.4 µg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 µg/m(3), outdoors: 0.39 µg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.


Asunto(s)
Contaminación del Aire Interior/análisis , Material Particulado/análisis , Alberta , Polvo , Humanos , Vehículos a Motor , Estaciones del Año , Sulfatos/análisis , Contaminación por Humo de Tabaco/análisis
5.
Rev Environ Contam Toxicol ; 234: 135-203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25385514

RESUMEN

In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Metales/toxicidad , Material Particulado/toxicidad , Respiración/efectos de los fármacos , Exposición a Riesgos Ambientales , Humanos , Metales/análisis , Material Particulado/análisis , Centrales Eléctricas
6.
Environ Sci Technol ; 48(20): 12157-63, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25247985

RESUMEN

Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.


Asunto(s)
Filtros de Aire/estadística & datos numéricos , Contaminación del Aire Interior/análisis , Humo/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Canadá , Filtración/instrumentación , Glucosa/análogos & derivados , Glucosa/análisis , Vivienda/estadística & datos numéricos , Humanos , Material Particulado/análisis , Estaciones del Año , Contaminación por Humo de Tabaco , Madera/química
7.
Environ Sci Technol ; 47(4): 1922-9, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23384189

RESUMEN

Inhalation exposure to ambient ultrafine particles (UFP) has been shown to induce adverse health effects such as respiratory and cardiovascular mortality. Human exposure to particles of outdoor origin often occurs indoors due to entry of UFP into buildings. The objective of the present study is to investigate entry of UFP into a building considering building operational characteristics and their size-dependent effects on UFP concentrations. Indoor and outdoor UFP concentrations along with air change rates were continuously measured in a full-scale test building. Estimates of infiltration factor, penetration coefficient, and deposition rate have been made for a range of particle sizes from 4 to 100 nm. The results show that UFP infiltration factor varies with particle diameter, window position, air change rate, and central fan operation. When the central fan was on continuously, the average infiltration factor ranged from 0.26 (particles <10 nm) to 0.82 (particles >90 nm) for two large window openings, and from 0.07 to 0.60 for two small window openings. Under the central fan-off condition, the average infiltration factor ranged from 0.25 (particles <10 nm) to 0.72 (particles >90 nm) for two small window openings, while it ranged from 0.01 to 0.48 with all windows closed. Larger window openings led to higher infiltration factors due to the larger extent of particle penetration into the building. The fan operation mode (on vs off) also has a strong impact, as the infiltration factor was consistently lower (up to 40%) when the fan was on due to additional particle deposition loss to the furnace filter and duct surfaces.


Asunto(s)
Contaminación del Aire Interior/análisis , Material Particulado/análisis , Ventilación , Modelos Estadísticos
8.
Sci Total Environ ; 852: 158244, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037897

RESUMEN

The widespread legalization of recreational marijuana raises growing concerns about exposure to secondhand marijuana smoke. An important location for marijuana smoking is the home, but few measurements of air pollutant concentrations in the home are available for a marijuana joint fully smoked in one of its rooms. We used research grade calibrated real-time continuous PM2.5 air monitors in controlled 5-hour experiments to measure fine particle concentrations in the 9 rooms of a detached, two-story, 4-bedroom home with either a tobacco cigarette or a marijuana joint fully smoked in the home's living room. The master bedroom's door was closed, and the other bedroom doors were open, as was the custom of occupants of this residence. In two experiments with a Marlboro tobacco cigarette smoked by a machine in the living room, the 5-hour mean PM2.5 concentrations in 9 rooms of the home were 15.2 µg/m3 (SD 5.6 µg/m3) and 15.0 µg/m3 (SD 3.7 µg/m3). In contrast, three experiments with pre-rolled marijuana joints smoked in the same manner in the living room produced 5-hour mean PM2.5 concentrations of 38.9 µg/m3 (SD 10.6 µg/m3), 79.8 µg/m3 (SD 25.7 µg/m3) and 80.7 µg/m3 (SD 28.8 µg/m3). In summary, the average secondhand PM2.5 concentrations from smoking a marijuana joint in the home were found to be 4.4 times as great as the secondhand PM2.5 concentrations from smoking a tobacco cigarette. Opening 3 windows by 12.7 cm reduced the high PM2.5 concentrations from marijuana smoking by 67 %, but the PM2.5 levels still exceeded those produced by tobacco smoking with the windows closed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Cannabis , Productos de Tabaco , Contaminación por Humo de Tabaco , Nicotiana , Contaminación por Humo de Tabaco/análisis , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis
9.
J Air Waste Manag Assoc ; 71(7): 830-843, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32970538

RESUMEN

Cooking is one of the most significant indoor sources of particles. This study investigated residential cooking and kitchen ventilation behaviors in Canadian homes, using data from 132 households in Halifax and Edmonton. Only 27% of the cooking activities were conducted with added ventilation (range hood use 10%, window opening 15%, and both 2%). The use pattern of the range hood was associated with mealtime and cooking method/device. The frequency of window opening was influenced by season and did not show a clear linkage to ventilation for cooking. Fine particle (PM2.5) decay rates, source strengths, emission masses, and exposure levels were estimated for cooking activities under different ventilation conditions. The results demonstrated the effect of kitchen ventilation on PM2.5 removal. Using a range hood and (or) opening kitchen windows increased the geometric mean (GM) decay rate by a factor of two. The GM source strength from cooking was 0.73 mg min-1 (geometric standard deviation (GSD) = 4.3) over an average cooking time of 17 minutes (GSD = 2.6). The GM emission mass was 12.6 mg (GSD = 5.3). The GM exposure from a single cooking event was 12 µg m-3 h (GSD = 6.6). The average number of cooking events per day was 2.4 (SD = 1.5) times. Cooking contributed about 22% to the total daily PM2.5 exposure in participating homes. The frequency and duration of cooking conducted at various temporal scales (mealtime, weekday/weekend, and season), as well as the use of different methods and devices, can support more accurate modeling of the impact of cooking on indoor air quality and human exposure.Implications: The inadequate use of ventilation during cooking highlights the need for educational programs on cooking exposures and ventilation strategies, such as running a range hood fan or opening kitchen windows when possible. Exposures in newly built homes might be a bigger concern than older homes if not providing sufficient ventilation during cooking, due to the tighter building envelopes.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Canadá , Culinaria , Monitoreo del Ambiente , Humanos , Material Particulado/análisis
10.
Environ Pollut ; 276: 116763, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33631689

RESUMEN

Epidemiological research on the adverse health outcomes due to PM2.5 exposure frequently relies on measurements from regulatory air quality monitors to provide ambient exposure estimates, whereas personal PM2.5 exposure may deviate from ambient concentrations due to outdoor infiltration and contributions from indoor sources. Research in quantifying infiltration factors (Finf), the fraction of outdoor PM2.5 that infiltrates indoors, has been historically limited in space and time due to the high costs of monitor deployment and maintenance. Recently, the growth of openly accessible, citizen-based PM2.5 measurements provides an unprecedented opportunity to characterize Finf at large spatiotemporal scales. In this analysis, 91 consumer-grade PurpleAir indoor/outdoor monitor pairs were identified in California (41 residential houses and 50 public/commercial buildings) during a 20-month period with around 650000 h of paired PM2.5 measurements. An empirical method was developed based on local polynomial regression to estimate site-specific Finf. The estimated site-specific Finf had a mean of 0.26 (25th, 75th percentiles: [0.15, 0.34]) with a mean bootstrap standard deviation of 0.04. The Finf estimates were toward the lower end of those reported previously. A threshold of ambient PM2.5 concentration, approximately 30 µg/m3, below which indoor sources contributed substantially to personal exposures, was also identified. The quantified relationship between indoor source contributions and ambient PM2.5 concentrations could serve as a metric of exposure errors when using outdoor monitors as an exposure proxy (without considering indoor-generated PM2.5), which may be of interest to epidemiological research. The proposed method can be generalized to larger geographical areas to better quantify PM2.5 outdoor infiltration and personal exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis
11.
Rev Environ Contam Toxicol ; 201: 1-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19484587

RESUMEN

The health risks to babies from pollutants in house dust may be 100 times greater than for adults. The young ingest more dust and are up to ten times more vulnerable to such exposures. House dust is the main exposure source for infants to allergens, lead, and PBDEs, as well as a major source of exposure to pesticides, PAHs, Gram-negative bacteria, arsenic, cadmium, chromium, phthalates, phenols, and other EDCs, mutagens, and carcinogens. Median or upper percentile concentrations in house dust of lead and several pesticides and PAHs may exceed health-based standards in North America. Early contact with pollutants among the very young is associated with higher rates of chronic illness such as asthma, loss of intelligence, ADHD, and cancer in children and adults. The potential of infants, who live in areas with soil contaminated by automotive and industrial emissions, can be given more protection by improved home cleaning and hand washing. Babies who live in houses built before 1978 have a prospective need for protection against lead exposures; homes built before 1940 have even higher lead exposure risks. The concentration of pollutants in house dust may be 2-32 times higher than that found in the soil near a house. Reducing infant exposures, at this critical time in their development, may reduce lifetime health costs, improve early learning, and increase adult productivity. Some interventions show a very rapid payback. Two large studies provide evidence that home visits to reduce the exposure of children with poorly controlled asthma triggers may return more than 100% on investment in 1 yr in reduced health costs. The tools provided to families during home visits, designed to reduce dust exposures, included vacuum cleaners with dirt finders and HEPA filtration, allergy control bedding covers, high-quality door mats, and HEPA air filters. Infants receive their highest exposure to pollutants in dust at home, where they spend the most time, and where the family has the most mitigation control. Normal vacuum cleaning allows deep dust to build up in carpets where it can be brought to the surface and become airborne as a result of activity on the carpet. Vacuums with dirt finders allow families to use the three-spot test to monitor deep dust, which can reinforce good cleaning habits. Motivated families that receive home visits from trained outreach workers can monitor and reduce dust exposures by 90% or more in 1 wk. The cost of such visits is low considering the reduction of risks achieved. Improved home cleaning is one of the first results observed among families who receive home visits from MHEs and CHWs. We believe that proven intervention methods can reduce the exposure of infants to pollutants in house dust, while recognizing that much remains to be learned about improving the effectiveness of such methods.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Polvo/análisis , Exposición a Riesgos Ambientales/prevención & control , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Éteres Difenilos Halogenados/análisis , Humanos , Lactante , Metales/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis
12.
Environ Health Perspect ; 110(7): 689-98, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12117646

RESUMEN

We used real-time breath measurement technology to investigate the suitability of some volatile organic compounds (VOCs) as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to tobacco smoke. Experiments were conducted with five smoker/nonsmoker pairs. The target VOCs included benzene, 1,3-butadiene, and the cigarette smoke biomarker 2,5-dimethylfuran. This study includes what we believe to be the first measurements of 1,3-butadiene in smokers' and nonsmokers' breath. The 1,3-butadiene and 2,5-dimethylfuran peak levels in the smokers' breath were similar (360 and 376 microg/m(3), respectively); the average benzene peak level was 522 microg/m(3). We found higher peak values of the target chemicals and shorter residence times in the body than previously reported, probably because of the improved time resolution made possible by the continuous breath measurement method. The real-time breath analyzer also showed the presence of the chemicals after exposure in the breath of the nonsmokers, but at greatly reduced levels. Single breath samples collected in evacuated canisters and analyzed independently with gas chromatography/mass spectrometry confirmed the presence of the target compounds in the postexposure breath of the nonsmokers but indicated that there was some contamination of the breath analyzer measurements. This was likely caused by desorption of organics from condensed tar in the analyzer tubing and on the quartz fiber filter used to remove particles. We used the decay data from the smokers to estimate residence times for the target chemicals. A two-compartment exponential model generally gave a better fit to the experimental decay data from the smokers than a single-compartment model. Residence times for benzene, 1,3-butadiene, and 2,5-dimethylfuran ranged from 0.5 (1,3-butadiene) to 0.9 min (benzene) for tau1 and were essentially constant (14 min) for tau2. These findings will be useful in models of environmental tobacco smoke exposure and risk.


Asunto(s)
Biomarcadores/análisis , Exposición a Riesgos Ambientales , Fumar , Contaminación por Humo de Tabaco , Adulto , Pruebas Respiratorias , Femenino , Humanos , Masculino , Modelos Teóricos , Compuestos Orgánicos/análisis , Volatilización
13.
Environ Health Perspect ; 111(9): 1265-72, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12842784

RESUMEN

Inner-city children have high rates of asthma. Exposures to particles, including allergens, may cause or exacerbate asthma symptoms. As part of an epidemiologic study of inner-city children with asthma, continuous (10-min average) measurements of particle concentrations were made for 2-week periods in 294 homes drawn from seven cities. Measurements were made using an optical scattering device that is most sensitive to fine particles. The concentrations recorded by these devices were corrected to agree with colocated outdoor gravimetric PM2.5 monitors. Indoor concentrations in the homes averaged 27.7 (standard deviation = 35.9) micro g/m3, compared with concurrent outdoor concentrations of 13.6 (7.5) micro g/m3. A multivariate model indicated that outdoor particles penetrated indoors with an efficiency of 0.48 and were therefore responsible for only 25% of the mean indoor concentration. The major indoor source was smoking, which elevated indoor concentrations by 37 micro g/m3 in the 101 homes with smokers. Other significant sources included frying, smoky cooking events, use of incense, and apartment housing, although the increases due to these events ranged only from 3 to 6 micro g/m3. The 10-min averaging time allowed calculation of an average diurnal variation, showing large increases in the evening due to smoking and smaller increases at meal times due to cooking. Most of the observed variance in indoor concentrations was day to day, with roughly similar contributions to the variance from visit to visit and home to home within a city and only a small contribution made by variance among cities. The small variation among cities and the similarity across cities of the observed indoor air particle distributions suggest that sources of indoor concentrations do not vary considerably from one city to the next, and thus that simple models can predict indoor air concentrations in cities having only outdoor measurements.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Asma/etiología , Culinaria , Modelos Teóricos , Fumar/efectos adversos , Asma/epidemiología , Niño , Preescolar , Monitoreo del Ambiente , Monitoreo Epidemiológico , Femenino , Predicción , Humanos , Masculino , Tamaño de la Partícula , Periodicidad , Reproducibilidad de los Resultados , Estados Unidos/epidemiología , Población Urbana
14.
J Air Waste Manag Assoc ; 52(2): 147-59, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15143789

RESUMEN

More than 300 air change rate experiments were completed in two occupied residences: a two-story detached house in Redwood City, CA, and a three-story townhouse in Reston, VA. A continuous monitor was used to measure the decay of SF6 tracer gas over periods of 1-18 hr. Each experiment first included a measurement of the air change rate with all exterior doors and windows closed (State 0), then a measurement with the single change from State 0 conditions of opening one or more windows. The overall average State 0 air change rate was 0.37 air changes per hour (hr(-1)) (SD = 0.10 hr(-1); n = 112) for the California house and 0.41 hr(-1) (SD = 0.19 hr(-1); n = 203) for the Virginia house. Indoor/outdoor temperature differences appeared to be responsible for the variation at the Virginia house of 0.15-0.85 hr(-1) when windows were closed. Opening a single window increased the State 0 air change rate by an amount roughly proportional to the width of the opening, reaching increments as high as 0.80 hr(-1) in the California house and 1.3 hr(-1) in the Virginia house. Multiple window openings increased the air change rate by amounts ranging from 0.10 to 2.8 hr(-1) in the California house and from 0.49 to 1.7 hr(-1) in the Virginia house. Compared with temperature differences and wind effects, opening windows produced the greatest increase in the air change rates measured in both homes. Results of this study indicate the importance of occupant window-opening behavior on a home's air change rate and the consequent need to incorporate this factor when estimating human exposure to indoor air pollutants.


Asunto(s)
Contaminación del Aire Interior/análisis , Ventilación , Algoritmos , California , Exposición a Riesgos Ambientales , Gases/análisis
15.
J Air Waste Manag Assoc ; 52(1): 41-9, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15152663

RESUMEN

Black carbon (BC) was measured every 5 min for two years (May 1998-May 2000) inside and immediately outside a northern Virginia house (suburban Washington, DC) occupied by two nonsmokers. Two aethalometers, which measure BC by optical transmission through a quartz fiber tape, were employed indoors and outdoors. Meteorological parameters were obtained on an hourly basis from nearby Dulles airport. Indoor activities were recorded to identify indoor sources such as combustion activities, which occurred 9% of the time during the first year and 4% of the time during the second year. At times without indoor sources, indoor/outdoor BC ratios averaged 0.53 in the first year and 0.35 in the second year. The main outdoor source of BC was the general regional background, contributing 83-84% of the total during each of the two years. Morning rush hour traffic contributed 8-9% of the total BC. An evening peak in the fall and winter, thought to include contributions from wood burning, was responsible for approximately 8% of the annual average BC concentration. The main indoor sources of BC were cooking and candle burning, contributing 16 and 31%, respectively, of the annual average indoor concentrations in the two years. Relative humidity (RH) affected the outdoor aethalometer in both years. An artifact associated with the tape advance was noted for the aethalometer, but a correction factor was developed that reduced the associated error by a factor of 2.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Carbono/análisis , Monitoreo del Ambiente , Incineración , Emisiones de Vehículos , Madera
17.
J Expo Sci Environ Epidemiol ; 21(1): 49-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20502493

RESUMEN

Continuous monitors can be used to supplement traditional filter-based methods of determining personal exposure to air pollutants. They have the advantages of being able to identify nearby sources and detect temporal changes on a time scale of a few minutes. The Windsor Ontario Exposure Assessment Study (WOEAS) adopted an approach of using multiple continuous monitors to measure indoor, outdoor (near-residential) and personal exposures to PM2.5, ultrafine particles and black carbon. About 48 adults and households were sampled for five consecutive 24-h periods in summer and winter 2005, and another 48 asthmatic children for five consecutive 24-h periods in summer and winter 2006. This article addresses the laboratory and field validation of these continuous monitors. A companion article (Wheeler et al., 2010) provides similar analyses for the 24-h integrated methods, as well as providing an overview of the objectives and study design. The four continuous monitors were the DustTrak (Model 8520, TSI, St. Paul, MN, USA) and personal DataRAM (pDR) (ThermoScientific, Waltham, MA, USA) for PM2.5; the P-Trak (Model 8525, TSI) for ultrafine particles; and the Aethalometer (AE-42, Magee Scientific, Berkeley, CA, USA) for black carbon (BC). All monitors were tested in multiple co-location studies involving as many as 16 monitors of a given type to determine their limits of detection as well as bias and precision. The effect of concentration and electronic drift on bias and precision were determined from both the collocated studies and the full field study. The effect of rapid changes in environmental conditions on switching an instrument from indoor to outdoor sampling was also studied. The use of multiple instruments for outdoor sampling was valuable in identifying occasional poor performance by one instrument and in better determining local contributions to the spatial variation of particulate pollution. Both the DustTrak and pDR were shown to be in reasonable agreement (R² of 90 and 70%, respectively) with the gravimetric PM2.5 method. Both instruments had limits of detection of about 5 µg/m³. The DustTrak and pDR had multiplicative biases of about 2.5 and 1.6, respectively, compared with the gravimetric samplers. However, their average bias-corrected precisions were <10%, indicating that a proper correction for bias would bring them into very good agreement with standard methods. Although no standard methods exist to establish the bias of the Aethalometer and P-Trak, the precision was within 20% for the Aethalometer and within 10% for the P-Trak. These findings suggest that all four instruments can supply useful information in environmental studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/instrumentación , Adulto , Niño , Monitoreo del Ambiente/métodos , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Reproducibilidad de los Resultados , Estaciones del Año , Hollín/análisis
18.
Environ Sci Technol ; 38(8): 2304-11, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15116834

RESUMEN

Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were used to calculate particle counts in 124 size bins from 0.01 to 2.5 microm. Data were collected at 5 min intervals for 18 months in an occupied house. Tracer gas measurements were made every 10 min in each of 10 rooms of the house to establish air change rates. Cooking episodes (N = 44) were selected meeting certain criteria (high concentrations, no concurrent indoor sources, long smooth decay curves), and the number and volume of particles produced were determined for each size category. For each episode, the particle decay rate was determined and used to determine the source strength for each size category. The selected cooking episodes (mostly frying) were capable of producing about 10(14) particles over the length of the cooking period (about 15 min), more than 90% of them in the ultrafine (< 0.1 microm) range, with an estimated whole-house volume concentration of 50 (microm/cm)3. More than 60% of this volume occurred in the 0.1-0.3 microm range. Frying produced peak numbers of particles at about 0.06 microm, with a secondary peak at 0.01 microm. The peak volume occurred at a diameter of about 0.16 microm. Since the cooking episodes selected were biased toward higher concentrations, the particle concentrations measured during about 600 h of morning and evening cooking over a full year were compared to concentrations measured during noncooking periods at the same times. Cooking was capable of producing more than 10 times the ultrafine particle number observed during noncooking periods. Levels of PM2.5 were increased during cooking by a factor of 3. Breakfast cooking (mainly heating water for coffee and using an electric toaster) produced concentrations about half those produced from more complex dinnertime cooking. Although the number and volume concentrations observed depend on air change rates, house volume, and deposition rates due to fans and filters, the source strengths calculated here are independent of these variables and may be used to estimate number and volume concentrations in other types of homes with widely varying volumes, ventilation rates, and heating and air-conditioning practices.


Asunto(s)
Contaminación del Aire Interior/análisis , Culinaria , Monitoreo del Ambiente , Gases , Vivienda , Tamaño de la Partícula , Valores de Referencia , Ventilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA