RESUMEN
BACKGROUND: Viruses are the leading etiology of acute respiratory infections (ARI) in children. However, there is limited knowledge on drivers of severe acute respiratory infection (SARI) cases involving viruses. We aimed to identify factors associated with severity and prolonged hospitalization of viral SARI among children < 5 years in Burkina Faso. METHODS: Data were collected from four SARI sentinel surveillance sites during October 2016 through April 2019. A SARI case was a child < 5 years with an acute respiratory infection with history of fever or measured fever ≥ 38 °C and cough with onset within the last ten days, requiring hospitalization. Very severe ARI cases required intensive care or had at least one danger sign. Oropharyngeal/nasopharyngeal specimens were collected and analyzed by multiplex real-time reverse-transcription polymerase chain reaction (rRT-PCR) using FTD-33 Kit. For this analysis, we included only SARI cases with rRT-PCR positive test results for at least one respiratory virus. We used simple and multilevel logistic regression models to assess factors associated with very severe viral ARI and viral SARI with prolonged hospitalization. RESULTS: Overall, 1159 viral SARI cases were included in the analysis after excluding exclusively bacterial SARI cases (n = 273)very severe viral ARI cases were common among children living in urban areas (AdjOR = 1.3; 95% CI: 1.1-1.6), those < 3 months old (AdjOR = 1.5; 95% CI: 1.1-2.3), and those coinfected with Klebsiella pneumoniae (AdjOR = 1.9; 95% CI: 1.2-2.2). Malnutrition (AdjOR = 2.2; 95% CI: 1.1-4.2), hospitalization during the rainy season (AdjOR = 1.71; 95% CI: 1.2-2.5), and infection with human CoronavirusOC43 (AdjOR = 3; 95% CI: 1.2-8) were significantly associated with prolonged length of hospital stay (> 7 days). CONCLUSION: Younger age, malnutrition, codetection of Klebsiella pneumoniae, and illness during the rainy season were associated with very severe cases and prolonged hospitalization of SARI involving viruses in children under five years. These findings emphasize the need for preventive actions targeting these factors in young children.
Asunto(s)
Gripe Humana , Desnutrición , Neumonía , Infecciones del Sistema Respiratorio , Virosis , Virus , Niño , Humanos , Lactante , Preescolar , Tiempo de Internación , Burkina Faso/epidemiología , Virosis/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Virus/genética , Hospitalización , Gripe Humana/epidemiologíaRESUMEN
BACKGROUND: Lower respiratory tract infections are a leading cause of death in young children, but few studies have collected the specimens needed to define the role of specific causes. The Child Health and Mortality Prevention Surveillance (CHAMPS) platform aims to investigate causes of death in children aged <5 years in high-mortality rate settings, using postmortem minimally invasive tissue sampling and other advanced diagnostic techniques. We examined findings for deaths identified in CHAMPS sites in 7 countries in sub-Saharan Africa and south Asia to evaluate the role of respiratory syncytial virus (RSV). METHODS: We included deaths that occurred between December 2016 and December 2019. Panels determined causes of deaths by reviewing all available data including pathological results from minimally invasive tissue sampling, polymerase chain reaction screening for multiple infectious pathogens in lung tissue, nasopharyngeal swab, blood, and cerebrospinal fluid samples, clinical information from medical records, and verbal autopsies. RESULTS: We evaluated 1213 deaths, including 695 in neonates (aged <28 days), 283 in infants (28 days to <12 months), and 235 in children (12-59 months). RSV was detected in postmortem specimens in 67 of 1213 deaths (5.5%); in 24 deaths (2.0% of total), RSV was determined to be a cause of death, and it contributed to 5 other deaths. Younger infants (28 days to <6 months of age) accounted for half of all deaths attributed to RSV; 6.5% of all deaths in younger infants were attributed to RSV. RSV was the underlying and only cause in 4 deaths; the remainder (nâ =â 20) had a median of 2 (range, 1-5) other conditions in the causal chain. Birth defects (nâ =â 8) and infections with other pathogens (nâ =â 17) were common comorbid conditions. CONCLUSIONS: RSV is an important cause of child deaths, particularly in young infants. These findings add to the substantial body of literature calling for better treatment and prevention options for RSV in high-mortality rate settings.
Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Salud Infantil , Mortalidad del Niño , Preescolar , Humanos , Lactante , Recién Nacido , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/epidemiologíaRESUMEN
Respiratory diphtheria, characterized by a firmly adherent pseudomembrane, is caused by toxin-producing strains of Corynebacterium diphtheriae, with similar illness produced occasionally by toxigenic Corynebacterium ulcerans or, rarely, Corynebacterium pseudotuberculosis While diphtheria laboratory confirmation requires culture methods to determine toxigenicity, real-time PCR (RT-PCR) provides a faster method to detect the toxin gene (tox). Nontoxigenic tox-bearing (NTTB) Corynebacterium isolates have been described, but impact of these isolates on the accuracy of molecular diagnostics is not well characterized. Here, we describe a new triplex RT-PCR assay to detect tox and distinguish C. diphtheriae from the closely related species C. ulcerans and C. pseudotuberculosis Analytical sensitivity and specificity of the assay were assessed in comparison to culture using 690 previously characterized microbial isolates. The new triplex assay characterized Corynebacterium isolates accurately, with 100% analytical sensitivity for all targets. Analytical specificity with isolates was 94.1%, 100%, and 99.5% for tox, Diph_rpoB, and CUP_rpoB targets, respectively. Twenty-nine NTTB Corynebacterium isolates, representing 5.9% of 494 nontoxigenic isolates tested, were detected by RT-PCR. Whole-genome sequencing of NTTB isolates revealed varied mutations putatively underlying their lack of toxin production, as well as eight isolates with no mutation in tox or the promoter region. This new Corynebacterium RT-PCR method provides a rapid tool to screen isolates and identify probable diphtheria cases directly from specimens. However, the sporadic occurrence of NTTB isolates reinforces the viewpoint that diphtheria culture diagnostics continue to provide the most accurate case confirmation.
Asunto(s)
Corynebacterium diphtheriae , Difteria , Corynebacterium/genética , Corynebacterium diphtheriae/genética , Toxina Diftérica/genética , Humanos , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Child Health and Mortality Prevention Surveillance (CHAMPS) laboratories are employing a variety of laboratory methods to identify infectious agents contributing to deaths of children <5 years old and stillbirths in sub-Saharan Africa and South Asia. In support of this long-term objective, our team developed TaqMan Array Cards (TACs) for testing postmortem specimens (blood, cerebrospinal fluid, lung tissue, respiratory tract swabs, and rectal swabs) for >100 real-time polymerase chain reaction (PCR) targets in total (30-45 per card depending on configuration). Multipathogen panels were configured by syndrome and customized to include pathogens of significance in young children within the regions where CHAMPS is conducted, including bacteria (57 targets covering 30 genera), viruses (48 targets covering 40 viruses), parasites (8 targets covering 8 organisms), and fungi (3 targets covering 3 organisms). The development and application of multiplex real-time PCR reactions to the TAC microfluidic platform increased the number of targets in each panel while maintaining assay efficiency and replicates for heightened sensitivity. These advances represent a substantial improvement in the utility of this technology for infectious disease diagnostics and surveillance. We optimized all aspects of the CHAMPS molecular laboratory testing workflow including nucleic acid extraction, quality assurance, and data management to ensure comprehensive molecular testing of specimens and high-quality data. Here we describe the development and implementation of multiplex TACs and associated laboratory protocols for specimen processing, testing, and data management at CHAMPS site laboratories.
Asunto(s)
Vigilancia de la Población/métodos , Manejo de Especímenes/métodos , África del Sur del Sahara , Asia , Bacterias/genética , Niño , Salud Infantil , Mortalidad del Niño , Enfermedades Transmisibles/diagnóstico , Hongos/genética , Humanos , Laboratorios , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Virus/genéticaRESUMEN
BACKGROUND: More than 500â000 neonatal deaths per year result from possible serious bacterial infections (pSBIs), but the causes are largely unknown. We investigated the incidence of community-acquired infections caused by specific organisms among neonates in south Asia. METHODS: From 2011 to 2014, we identified babies through population-based pregnancy surveillance at five sites in Bangladesh, India, and Pakistan. Babies were visited at home by community health workers up to ten times from age 0 to 59 days. Illness meeting the WHO definition of pSBI and randomly selected healthy babies were referred to study physicians. The primary objective was to estimate proportions of specific infectious causes by blood culture and Custom TaqMan Array Cards molecular assay (Thermo Fisher, Bartlesville, OK, USA) of blood and respiratory samples. FINDINGS: 6022 pSBI episodes were identified among 63â114 babies (95·4 per 1000 livebirths). Causes were attributed in 28% of episodes (16% bacterial and 12% viral). Mean incidence of bacterial infections was 13·2 (95% credible interval [CrI] 11·2-15·6) per 1000 livebirths and of viral infections was 10·1 (9·4-11·6) per 1000 livebirths. The leading pathogen was respiratory syncytial virus (5·4, 95% CrI 4·8-6·3 episodes per 1000 livebirths), followed by Ureaplasma spp (2·4, 1·6-3·2 episodes per 1000 livebirths). Among babies who died, causes were attributed to 46% of pSBI episodes, among which 92% were bacterial. 85 (83%) of 102 blood culture isolates were susceptible to penicillin, ampicillin, gentamicin, or a combination of these drugs. INTERPRETATION: Non-attribution of a cause in a high proportion of patients suggests that a substantial proportion of pSBI episodes might not have been due to infection. The predominance of bacterial causes among babies who died, however, indicates that appropriate prevention measures and management could substantially affect neonatal mortality. Susceptibility of bacterial isolates to first-line antibiotics emphasises the need for prudent and limited use of newer-generation antibiotics. Furthermore, the predominance of atypical bacteria we found and high incidence of respiratory syncytial virus indicated that changes in management strategies for treatment and prevention are needed. Given the burden of disease, prevention of respiratory syncytial virus would have a notable effect on the overall health system and achievement of Sustainable Development Goal. FUNDING: Bill & Melinda Gates Foundation.
Asunto(s)
Infecciones Bacterianas/epidemiología , Infecciones Comunitarias Adquiridas/epidemiología , Países en Desarrollo , Virosis/epidemiología , Adolescente , Adulto , Infecciones Bacterianas/etiología , Infecciones Bacterianas/mortalidad , Bangladesh , Causalidad , Preescolar , Estudios de Cohortes , Infecciones Comunitarias Adquiridas/etiología , Infecciones Comunitarias Adquiridas/mortalidad , Femenino , Humanos , Incidencia , India , Lactante , Recién Nacido , Enfermedades del Prematuro/epidemiología , Enfermedades del Prematuro/etiología , Masculino , Persona de Mediana Edad , Pakistán , Vigilancia de la Población , Embarazo , Resultado del Embarazo/epidemiología , Factores de Riesgo , Virosis/etiología , Virosis/mortalidad , Adulto JovenRESUMEN
On April 25, 2017, a cluster of unexplained illness and deaths among persons who had attended a funeral during April 21-22 was reported in Sinoe County, Liberia (1). Using a broad initial case definition, 31 cases were identified, including 13 (42%) deaths. Twenty-seven cases were from Sinoe County (1), and two cases each were from Grand Bassa and Monsterrado counties, respectively. On May 5, 2017, initial multipathogen testing of specimens from four fatal cases using the Taqman Array Card (TAC) assay identified Neisseria meningitidis in all specimens. Subsequent testing using direct real-time polymerase chain reaction (PCR) confirmed N. meningitidis in 14 (58%) of 24 patients with available specimens and identified N. meningitidis serogroup C (NmC) in 13 (54%) patients. N. meningitidis was detected in specimens from 11 of the 13 patients who died; no specimens were available from the other two fatal cases. On May 16, 2017, the National Public Health Institute of Liberia and the Ministry of Health of Liberia issued a press release confirming serogroup C meningococcal disease as the cause of this outbreak in Liberia.
Asunto(s)
Brotes de Enfermedades , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/microbiología , Neisseria meningitidis Serogrupo C/aislamiento & purificación , Servicios de Laboratorio Clínico/estadística & datos numéricos , Análisis por Conglomerados , Humanos , Liberia/epidemiología , Meningitis Meningocócica/mortalidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de TiempoRESUMEN
An outbreak at a university in Georgia was identified after 83 cases of probable pneumonia were reported among students. Respiratory specimens were obtained from 21 students for the outbreak investigation. The TaqMan array card (TAC), a quantitative PCR (qPCR)-based multipathogen detection technology, was used to initially identify Mycoplasma pneumoniae as the causative agent in this outbreak. TAC demonstrated 100% diagnostic specificity and sensitivity compared to those of the multiplex qPCR assay for this agent. All M. pneumoniae specimens (n=12) and isolates (n=10) were found through genetic analysis to be susceptible to macrolide antibiotics. The strain diversity of M. pneumoniae associated with this outbreak setting was identified using a variety of molecular typing procedures, resulting in two P1 genotypes (types 1 [60%] and 2 [40%]) and seven different multilocus variable-number tandem-repeat analysis (MLVA) profiles. Continued molecular typing of this organism, particularly during outbreaks, may enhance the current understanding of the epidemiology of M. pneumoniae and may ultimately lead to a more effective public health response.
Asunto(s)
Técnicas Bacteriológicas/métodos , Brotes de Enfermedades , Técnicas de Diagnóstico Molecular/métodos , Mycoplasma pneumoniae/aislamiento & purificación , Neumonía por Mycoplasma/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Universidades , Adolescente , Adulto , Antibacterianos/farmacología , Secreciones Corporales/microbiología , Farmacorresistencia Bacteriana , Femenino , Variación Genética , Georgia/epidemiología , Humanos , Macrólidos/farmacología , Masculino , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Mycoplasma pneumoniae/efectos de los fármacos , Mycoplasma pneumoniae/genética , Neumonía por Mycoplasma/microbiología , Sistema Respiratorio/microbiología , Sensibilidad y Especificidad , Estudiantes , Adulto JovenRESUMEN
Four Chlamydia psittaci isolates were recovered from clinical specimens from ill workers during a multistate outbreak at two chicken processing plants. Whole genome sequencing analyses revealed high similarity to C. psittaci genotype D. The isolates differed from each other by only two single nucleotide polymorphisms, indicating a common source.
RESUMEN
OBJECTIVE: Risk factors predisposing infants to community-acquired bacterial infections during the first 2 months of life are poorly understood in South Asia. Identifying risk factors for infection could lead to improved preventive measures and antibiotic stewardship. METHODS: Five sites in Bangladesh, India and Pakistan enrolled mother-child pairs via population-based pregnancy surveillance by community health workers. Medical, sociodemographic and epidemiological risk factor data were collected. Young infants aged 0-59 days with signs of possible serious bacterial infection (pSBI) and age-matched controls provided blood and respiratory specimens that were analysed by blood culture and real-time PCR. These tests were used to build a Bayesian partial latent class model (PLCM) capable of attributing the probable cause of each infant's infection in the ANISA study. The collected risk factors from all mother-child pairs were classified and analysed against the PLCM using bivariate and stepwise logistic multivariable regression modelling to determine risk factors of probable bacterial infection. RESULTS: Among 63 114 infants born, 14 655 were assessed and 6022 had signs of pSBI; of these, 81% (4859) provided blood samples for culture, 71% (4216) provided blood samples for quantitative PCR (qPCR) and 86% (5209) provided respiratory qPCR samples. Risk factors associated with bacterial-attributed infections included: low (relative risk (RR) 1.73, 95% credible interval (CrI) 1.42 to 2.11) and very low birth weight (RR 5.77, 95% CrI 3.73 to 8.94), male sex (RR 1.27, 95% CrI 1.07 to 1.52), breathing problems at birth (RR 2.50, 95% CrI 1.96 to 3.18), premature rupture of membranes (PROMs) (RR 1.27, 95% CrI 1.03 to 1.58) and being in the lowest three socioeconomic status quintiles (first RR 1.52, 95% CrI 1.07 to 2.16; second RR 1.41, 95% CrI 1.00 to 1.97; third RR 1.42, 95% CrI 1.01 to 1.99). CONCLUSION: Distinct risk factors: birth weight, male sex, breathing problems at birth and PROM were significantly associated with the development of bacterial sepsis across South Asian community settings, supporting refined clinical discernment and targeted use of antimicrobials.
Asunto(s)
Infecciones Bacterianas , Infecciones Comunitarias Adquiridas , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Masculino , Estudios Longitudinales , Teorema de Bayes , Infecciones Comunitarias Adquiridas/complicaciones , Infecciones Comunitarias Adquiridas/epidemiología , Factores de Riesgo , Estudios de Cohortes , Estudios de Casos y Controles , India/epidemiologíaRESUMEN
BACKGROUND: Reliable diagnostics are a key to identifying influenza infections. OBJECTIVES: Our objectives were to describe the detection of influenza among severe acute respiratory infection (SARI) cases, to compare test results from the Fast Track Diagnostics (FTD) Kit for influenza detection to the Centers for Disease Control (CDC) human influenza virus detection and characterization panel, and to assess seasonality of influenza in Burkina Faso. METHODS: Nasopharyngeal and oropharyngeal specimens from SARI cases (hospitalized patients with fever, cough, and onset in the previous 10 days) were tested using the FTD-33 Kit and the CDC rRT-PCR influenza assays. We assessed sensitivity and specificity of the FTD-33 Kit for detecting influenza A, influenza B, and the influenza A(H1N1)pdm09 strain using the CDC human influenza rRT-PCR panel as the gold standard. RESULTS: From December 2016 to February 2019, 1706 SARI cases were identified, 1511 specimens were tested, and 211 were positive for influenza A (14.0%) and 100 for influenza B (6.6%) by either assay. Higher influenza circulation occurred between November and April with varying peaks of influenza A and influenza B. Sensitivity of the FTD-33 assay was 91.9% for influenza A, 95.7% for influenza B, and 93.8% for A(H1N1)pdm09 subtype. Specificity was over 99% for all three tests. CONCLUSIONS: Our study indicates that Burkina Faso has one peak of influenza each year which is similar to the Northern Hemisphere and differs from other countries in West Africa. We found high concordance of influenza results between the two assays indicating FTD-33 can be used to reliably detect influenza among SARI cases.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Centers for Disease Control and Prevention, U.S. , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Laboratorios , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estados UnidosRESUMEN
BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), evolved rapidly in the United States. This report describes the demographic, clinical, and epidemiologic characteristics of 544 U.S. persons under investigation (PUI) for COVID-19 with complete SARS-CoV-2 testing in the beginning stages of the pandemic from January 17 through February 29, 2020. METHODS: In this surveillance cohort, the U.S. Centers for Disease Control and Prevention (CDC) provided consultation to public health and healthcare professionals to identify PUI for SARS-CoV-2 testing by quantitative real-time reverse-transcription PCR. Demographic, clinical, and epidemiologic characteristics of PUI were reported by public health and healthcare professionals during consultation with on-call CDC clinicians and subsequent submission of a CDC PUI Report Form. Characteristics of laboratory-negative and laboratory-positive persons were summarized as proportions for the period of January 17-February 29, and characteristics of all PUI were compared before and after February 12 using prevalence ratios. RESULTS: A total of 36 PUI tested positive for SARS-CoV-2 and were classified as confirmed cases. Confirmed cases and PUI testing negative for SARS-CoV-2 had similar demographic, clinical, and epidemiologic characteristics. Consistent with changes in PUI evaluation criteria, 88% (13/15) of confirmed cases detected before February 12, 2020, reported travel from China. After February 12, 57% (12/21) of confirmed cases reported no known travel- or contact-related exposures. CONCLUSIONS: These findings can inform preparedness for future pandemics, including capacity for rapid expansion of novel diagnostic tests to accommodate broad surveillance strategies to assess community transmission, including potential contributions from asymptomatic and presymptomatic infections.
Asunto(s)
COVID-19/diagnóstico , COVID-19/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Prueba de Ácido Nucleico para COVID-19 , Centers for Disease Control and Prevention, U.S. , Niño , Preescolar , Estudios de Cohortes , Monitoreo Epidemiológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Salud Pública , SARS-CoV-2/aislamiento & purificación , Viaje , Enfermedad Relacionada con los Viajes , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Identification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pathogens is challenging. The TaqMan Array Card (TAC) is a multiple-pathogen detection method that has previously been identified as a valuable technique for determining etiology of infections and holds promise for expanded use in clinical microbiology laboratories and surveillance studies. We selected TAC for use in the Aetiology of Neonatal Infection in South Asia (ANISA) study for identifying etiologies of severe disease in neonates in Bangladesh, India, and Pakistan. Here we report optimization of TAC to improve pathogen detection and overcome technical challenges associated with use of this technology in a large-scale surveillance study. Specifically, we increased the number of assay replicates, implemented a more robust RT-qPCR enzyme formulation, and adopted a more efficient method for extraction of total nucleic acid from blood specimens. We also report the development and analytical validation of ten new assays for use in the ANISA study. Based on these data, we revised the study-specific TACs for detection of 22 pathogens in NP/OP swabs and 12 pathogens in blood specimens as well as two control reactions (internal positive control and human nucleic acid control) for each specimen type. The cumulative improvements realized through these optimization studies will benefit ANISA and perhaps other studies utilizing multiple-pathogen detection approaches. These lessons may also contribute to the expansion of TAC technology to the clinical setting.