Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 13(10): e1006706, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084270

RESUMEN

Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Enterocitos/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Mucosa Intestinal/microbiología , Adhesinas Bacterianas/genética , Proteínas Portadoras/metabolismo , Islas Genómicas , Humanos , Mucosa Intestinal/metabolismo
2.
Cell Microbiol ; 19(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28054754

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin-producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin-deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/patología , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/microbiología , Metaloendopeptidasas/metabolismo , Moco/metabolismo , Adhesión Bacteriana/genética , Células CACO-2 , Línea Celular , Colon/microbiología , Colon/patología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Fimbrias Bacterianas/metabolismo , Flagelina/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/patología , Metaloendopeptidasas/genética , Mucina 2/metabolismo
3.
Sci Rep ; 12(1): 5369, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354857

RESUMEN

The COVID-19 pandemic requires sensitive detection of the SARS-CoV-2 virus from samples to ensure accurate detection of infected patients, an essential component of effective national track and trace programs. Due to the scaling challenges of large sample numbers, sample pooling is an attractive solution to reduce both extraction and amplification reagent costs, if high sensitivity can be maintained. We demonstrate that the Erba Molecular ErbaMDx SARS-CoV-2 RT-PCR Kit (EM kit) delivers high sensitivity, achieving analytical detection of 5 copies/reaction SARS-CoV-2 genomic RNA, and 200 copies/mL SARS-CoV-2 inactivated virus spiked into nasopharyngeal swab (NP) samples and extracted through workflow. Furthermore, the EM Kit demonstrates high sensitivity in both pooled (1 in 5) and non-pooled NP samples when compared to an FDA Emergency Use Authorization approved assay, following published FDA guidelines. These findings demonstrate that the EM Kit is suitable for sample pooling, with minimal impact on assay performance. As the COVID-19 pandemic progresses, high sensitivity assays such as the EM Kit will have an important role in ensuring high throughput and sensitive testing using pooled samples can be maintained, delivering the most cost-effective sample extraction and amplification option for national test and trace programs.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Nasofaringe , Pandemias , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Sensibilidad y Especificidad
4.
Front Microbiol ; 7: 244, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973622

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA