Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Annu Rev Biochem ; 90: 107-135, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882259

RESUMEN

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/fisiología , Anemia de Fanconi/genética , Vertebrados/genética , Acetaldehído/metabolismo , Animales , ADN/química , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Replicación del ADN , Anemia de Fanconi/metabolismo , Humanos
2.
Cell ; 176(1-2): 167-181.e21, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595447

RESUMEN

Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.


Asunto(s)
ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/fisiología , Femenino , Masculino , Proteolisis , Imagen Individual de Molécula/métodos , Xenopus laevis/metabolismo
3.
Mol Cell ; 84(3): 404-408, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306999

RESUMEN

To celebrate the 50th anniversary of Cell Press and the Cell focus issue on structural biology, we discussed with scientists working across diverse fields how AlphaFold has changed their research and brought structural biology to the masses.


Asunto(s)
Aniversarios y Eventos Especiales , Biología Molecular
4.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693351

RESUMEN

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , N-Glicosil Hidrolasas/metabolismo , Animales , Sistema Libre de Células/química , Reactivos de Enlaces Cruzados/química , ADN/biosíntesis , ADN/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Ficusina/química , N-Glicosil Hidrolasas/química , Xenopus laevis
5.
Mol Cell ; 83(1): 43-56.e10, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608669

RESUMEN

Endogenous and exogenous agents generate DNA-protein crosslinks (DPCs), whose replication-dependent degradation by the SPRTN protease suppresses aging and liver cancer. SPRTN is activated after the replicative CMG helicase bypasses a DPC and polymerase extends the nascent strand to the adduct. Here, we identify a role for the 5'-to-3' helicase FANCJ in DPC repair. In addition to supporting CMG bypass, FANCJ is essential for SPRTN activation. FANCJ binds ssDNA downstream of the DPC and uses its ATPase activity to unfold the protein adduct, which exposes the underlying DNA and enables cleavage of the adduct. FANCJ-dependent DPC unfolding is also essential for translesion DNA synthesis past DPCs that cannot be degraded. In summary, our results show that helicase-mediated protein unfolding enables multiple events in DPC repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Desplegamiento Proteico , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
6.
Cell ; 161(3): 429-430, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910200

RESUMEN

The first event in the initiation of eukaryotic DNA replication is the recruitment of the MCM2-7 ATPase, the core of the replicative DNA helicase, to origins. Ticau et al. use single-molecule imaging to reveal how ORC, Cdc6, and Cdt1 cooperate to load MCM2-7 onto DNA, enabling bidirectional replication.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Nat Rev Mol Cell Biol ; 18(8): 507-516, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28537574

RESUMEN

Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.


Asunto(s)
Replicación del ADN/fisiología , ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Saccharomyces cerevisiae/genética
8.
Cell ; 159(2): 346-57, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303529

RESUMEN

DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , Replicación del ADN , Animales , Extractos Celulares/química , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Óvulo/química , Xenopus
9.
Mol Cell ; 81(6): 1309-1318.e6, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33484638

RESUMEN

DNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or "nicks," which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, "runs off" the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates along double-stranded DNA beyond the break and is then ubiquitylated and removed from chromatin by the same pathway used during replication termination. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they suggest that CMG cannot be stored on dsDNA while cells resolve replication stress.


Asunto(s)
Cromatina , Roturas del ADN de Cadena Simple , ADN Helicasas , Replicación del ADN , Ubiquitinación , Proteínas de Xenopus , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Sf9 , Spodoptera , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
Nature ; 605(7909): 357-365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508654

RESUMEN

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Asunto(s)
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinasas , Proteolisis , Fase S , Animales , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
11.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862156

RESUMEN

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Inestabilidad Genómica , Animales , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Imagen Individual de Molécula , Factores de Tiempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
12.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32603710

RESUMEN

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Elongación Transcripcional/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Nucleosomas/metabolismo , Xenopus laevis
13.
Genes Dev ; 34(21-22): 1534-1545, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32943574

RESUMEN

When converging replication forks meet during replication termination, the CMG (Cdc45-MCM2-7-GINS) helicase is polyubiquitylated by CRL2Lrr1 and unloaded from chromatin by the p97 ATPase. Here, we investigate the signal that triggers CMG unloading in Xenopus egg extracts using single-molecule and ensemble approaches. We show that converging CMGs pass each other and keep translocating at the same speed as before convergence, whereafter they are rapidly and independently unloaded. When CMG unloading is blocked, diverging CMGs do not support DNA synthesis, indicating that after bypass CMGs encounter the nascent lagging strands of the converging fork and then translocate along double-stranded DNA (dsDNA). However, translocation on dsDNA is not required for CMG's removal from chromatin because in the absence of nascent strand synthesis, converging CMGs are still unloaded. Moreover, recombinant CMG added to nuclear extract undergoes ubiquitylation and disassembly in the absence of any DNA, and DNA digestion triggers CMG ubiquitylation at stalled replication forks. Our findings suggest that DNA suppresses CMG ubiquitylation during elongation and that this suppression is relieved when CMGs converge, leading to CMG unloading.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Xenopus/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/química , ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitinación , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Mol Cell ; 73(5): 915-929.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849395

RESUMEN

DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Daño del ADN , Replicación del ADN , ADN/biosíntesis , Reordenamiento Génico , Mitosis , Proteínas Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , ADN/genética , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , ADN Polimerasa theta
15.
Mol Cell ; 73(3): 574-588.e7, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595436

RESUMEN

DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , ADN/química , ADN/genética , Femenino , Masculino , Conformación de Ácido Nucleico , Complejo de la Endopetidasa Proteasomal/genética , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Células Sf9 , Relación Estructura-Actividad , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética
16.
Cell ; 146(6): 931-41, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925316

RESUMEN

The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , Xenopus/metabolismo , Animales , ADN de Cadena Simple/metabolismo , Modelos Biológicos , Fase S
17.
Nature ; 567(7747): 267-272, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842657

RESUMEN

Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Reparación del ADN , ADN/química , ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN/biosíntesis , Replicación del ADN , Femenino , Humanos , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , N-Glicosil Hidrolasas/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación , Xenopus
18.
Genes Dev ; 31(3): 275-290, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28235849

RESUMEN

A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termination, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during vertebrate DNA replication termination.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Adenosina Trifosfatasas/metabolismo , Animales , Cromatina/genética , ADN Polimerasa II/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
19.
Mol Cell ; 61(6): 850-8, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990988

RESUMEN

Repair of DNA double-strand breaks (DSBs) is essential for genomic stability. The most common DSB repair mechanism in human cells, non-homologous end joining (NHEJ), rejoins broken DNA ends by direct ligation. It remains unclear how components of the NHEJ machinery assemble a synaptic complex that bridges DNA ends. Here, we use single-molecule imaging in a vertebrate cell-free extract to show that synapsis of DNA ends occurs in at least two stages that are controlled by different NHEJ factors. DNA ends are initially tethered in a long-range complex whose formation requires the Ku70/80 heterodimer and the DNA-dependent protein kinase catalytic subunit. The ends are then closely aligned, which requires XLF, a non-catalytic function of XRCC4-LIG4, and DNA-PK activity. These results reveal a structural transition in the synaptic complex that governs alignment of DNA ends. Our approach provides a means of studying physiological DNA DSB repair at single-molecule resolution.


Asunto(s)
Emparejamiento Cromosómico/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Sistema Libre de Células , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku , Imagen Molecular , Unión Proteica
20.
Cell ; 134(6): 969-80, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805090

RESUMEN

DNA interstrand crosslinks (ICLs) are toxic DNA lesions whose repair occurs in the S phase of metazoans via an unknown mechanism. Here, we describe a cell-free system based on Xenopus egg extracts that supports ICL repair. During DNA replication of a plasmid containing a site-specific ICL, two replication forks converge on the crosslink. Subsequent lesion bypass involves advance of a nascent leading strand to within one nucleotide of the ICL, followed by incisions, translesion DNA synthesis, and extension of the nascent strand beyond the lesion. Immunodepletion experiments suggest that extension requires DNA polymerase zeta. Ultimately, a significant portion of the input DNA is fully repaired, but not if DNA replication is blocked. Our experiments establish a mechanism for ICL repair that reveals how this process is coupled to DNA replication.


Asunto(s)
Reparación del ADN , Replicación del ADN , Animales , Sistema Libre de Células , ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA