Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 801, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182031

RESUMEN

BACKGROUND: RNA sequencing (RNA-Seq) offers profound insights into the complex transcriptomes of diverse biological systems. However, standard differential expression analysis pipelines based on DESeq2 and edgeR encounter challenges when applied to the immediate early transcriptomes of Chlamydia spp., obligate intracellular bacteria. These challenges arise from their reliance on assumptions that do not hold in scenarios characterized by extensive transcriptomic activation and limited repression. RESULTS: Standard analyses using unique chlamydial RNA-Seq reads alone identify nearly 300 upregulated and about 300 downregulated genes, significantly deviating from actual RNA-Seq read trends. By incorporating both chlamydial and host reads or adjusting for total sequencing depth, the revised normalization methods each detected over 700 upregulated genes and 30 or fewer downregulated genes, closely aligned with observed RNA-Seq data. Further validation through qRT-PCR analysis confirmed the effectiveness of these adjusted approaches in capturing the true extent of transcriptomic activation during the immediate early phase of chlamydial infection. CONCLUSIONS: This study highlights the limitations of standard RNA-Seq analysis tools in scenarios with extensive transcriptomic activation, such as in Chlamydia spp. during early infection. Our revised normalization methods, incorporating host reads or total sequencing depth, provide a more accurate representation of gene expression dynamics. These approaches may inform similar adjustments in other systems with unbalanced gene expression dynamics, enhancing the accuracy of transcriptomic analysis.


Asunto(s)
Chlamydia , Transcriptoma , Chlamydia/genética , Humanos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/genética
2.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826265

RESUMEN

Motivation: RNA sequencing (RNA-Seq) offers profound insights into the complex transcriptomes of diverse biological systems. However, standard differential expression analysis pipelines based on DESeq2 and edgeR encounter challenges when applied to the immediate early transcriptomes of Chlamydia spp., obligate intracellular bacteria. These challenges arise from their reliance on assumptions that do not hold in scenarios characterized by extensive transcriptomic activation and limited repression. Standard analyses using unique chlamydial RNA-Seq reads alone identify nearly 300 upregulated and about 300 downregulated genes, significantly deviating from actual RNA-Seq read trends. Results: By incorporating both chlamydial and host reads or adjusting for total sequencing depth, the revised normalization methods each detected over 700 upregulated genes and 30 or fewer downregulated genes, closely aligned with observed RNA-Seq data. Further validation through qRT-PCR analysis confirmed the effectiveness of these adjusted approaches in capturing the true extent of transcriptomic activation during the immediate early phase of chlamydial infection. While the strategies employed are developed in the context of Chlamydia, the principles of flexible and context-aware normalization may inform adjustments in other systems with unbalanced gene expression dynamics, such as bacterial spore germination. Availability and implementation: The code for reproducing the presented bioinformatic analysis is available at https://zenodo.org/records/11201379.

3.
mBio ; 15(1): e0203623, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112466

RESUMEN

IMPORTANCE: Hallmarks of the developmental cycle of the obligate intracellular pathogenic bacterium Chlamydia are the primary differentiation of the infectious elementary body (EB) into the proliferative reticulate body (RB) and the secondary differentiation of RBs back into EBs. The mechanisms regulating these transitions remain unclear. In this report, we developed an effective novel strategy termed dependence on plasmid-mediated expression (DOPE) that allows for the knockdown of essential genes in Chlamydia. We demonstrate that GrgA, a Chlamydia-specific transcription factor, is essential for the secondary differentiation and optimal growth of RBs. We also show that GrgA, a chromosome-encoded regulatory protein, controls the maintenance of the chlamydial virulence plasmid. Transcriptomic analysis further indicates that GrgA functions as a critical regulator of all three sigma factors that recognize different promoter sets at developmental stages. The DOPE strategy outlined here should provide a valuable tool for future studies examining chlamydial growth, development, and pathogenicity.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Humanos , Chlamydia trachomatis/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factor sigma/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
mBio ; 14(1): e0349922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719197

RESUMEN

Gene transcription in bacteria is carried out by the multisubunit RNA polymerase (RNAP), which is composed of a catalytic core enzyme and a promoter-recognizing σ factor. The core enzyme comprises two α subunits, one ß subunit, one ß' subunit, and one ω subunit. The ω subunit plays critical roles in the assembly of the core enzyme and other cellular functions, including the regulation of bacterial growth, the stress response, and biofilm formation. However, the identity of an ω subunit for the obligate intracellular bacterium Chlamydia has not previously been determined. Here, we report the identification of the hypothetical protein CTL0286 as the probable chlamydial ω subunit based on sequence, synteny, and AlphaFold and AlphaFold-Multimer three-dimensional-structure predictions. Our findings indicate that CTL0286 functions as the missing ω subunit of chlamydial RNAP. Our extended analysis also indicates that all obligate intracellular bacteria have ω orthologs. IMPORTANCE Chlamydiae are obligate intracellular bacteria that replicate only inside eukaryotic cells. Previously, it has not been possible to identify a candidate gene encoding the chlamydial RNA polymerase ω subunit, and it has been hypothesized that the chlamydial RNA polymerase ω subunit was lost in the evolutionary process through which Chlamydiae reduced their genome size and proteome sizes to adapt to an obligate intracellular lifestyle. Here, we report the identification of the chlamydial RNA polymerase ω subunit, based on conserved sequence, conserved synteny, AlphaFold-predicted conserved three-dimensional structure, and AlfaFold-Multimer-predicted conserved interactions. Our identification of the previously elusive chlamydial RNA polymerase ω subunit sets the stage for investigation of its roles in regulation of gene expression during chlamydial growth, development, and stress responses, and sets the stage for preparation and study of the intact chlamydial RNA polymerase and its interactions with inhibitors.


Asunto(s)
Chlamydia , ARN Polimerasas Dirigidas por ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Bacterias/genética , Secuencia Conservada , Chlamydia/genética , Chlamydia/metabolismo
5.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577610

RESUMEN

Chlamydia, an obligate intracellular bacterial pathogen, has a unique developmental cycle involving the differentiation of invading elementary bodies (EBs) to noninfectious reticulate bodies (RBs), replication of RBs, and redifferentiation of RBs into progeny EBs. Progression of this cycle is regulated by three sigma factors, which direct the RNA polymerase to their respective target gene promoters. We hypothesized that the Chlamydia-specific transcriptional regulator GrgA, previously shown to activate σ66 and σ28, plays an essential role in chlamydial development and growth. To test this hypothesis, we applied a novel genetic tool known as dependence on plasmid-mediated expression (DOPE) to create Chlamydia trachomatis with conditional GrgA-deficiency. We show that GrgA-deficient C. trachomatis RBs have a growth rate that is approximately half of the normal rate and fail to transition into progeny EBs. In addition, GrgA-deficient C. trachomatis fail to maintain its virulence plasmid. Results of RNA-seq analysis indicate that GrgA promotes RB growth by optimizing tRNA synthesis and expression of nutrient-acquisition genes, while it enables RB-to-EB conversion by facilitating the expression of a histone and outer membrane proteins required for EB morphogenesis. GrgA also regulates numerous other late genes required for host cell exit and subsequent EB invasion into host cells. Importantly, GrgA stimulates the expression of σ54, the third and last sigma factor, and its activator AtoC, and thereby indirectly upregulating the expression of σ54-dependent genes. In conclusion, our work demonstrates that GrgA is a master transcriptional regulator in Chlamydia and plays multiple essential roles in chlamydial pathogenicity.

6.
Nano Lett ; 11(3): 1055-60, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21280660

RESUMEN

A variation of scanning gate microscopy (SGM) is demonstrated in which this imaging mode is extended into an electrostatic spectroscopy. Continuous variation of the SGM probe's electrostatic potential is used to directly resolve the energy spectrum of localized electronic scattering in functioning, molecular scale devices. The technique is applied to the energy-dependent carrier scattering that occurs at defect sites in carbon nanotube transistors, and fitting energy-resolved experimental data to a simple transmission model determines the electronic character of each defect site. For example, a phenolic type of covalent defect is revealed to produce a tunnel barrier 0.1 eV high and 0.5 nm wide.


Asunto(s)
Microscopía/métodos , Nanotubos de Carbono , Análisis Espectral/métodos , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA