Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 206(1): 56-69, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417304

RESUMEN

Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15, a kinesin involved in spindle separation during mitosis, and three telomere-related genes (TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10-7) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.


Asunto(s)
Fibrosis Pulmonar Idiopática , Cinesinas , Telomerasa , Exoma , Humanos , Fibrosis Pulmonar Idiopática/genética , Cinesinas/genética , Telomerasa/genética , Telómero
2.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36028256

RESUMEN

BACKGROUND: Whole genome sequencing (WGS) can detect variants and estimate telomere length. The clinical utility of WGS in estimating risk, progression and survival of pulmonary fibrosis patients is unknown. METHODS: In this observational cohort study, we performed WGS on 949 patients with idiopathic pulmonary fibrosis or familial pulmonary fibrosis to determine rare and common variant genotypes, estimate telomere length and assess the association of genomic factors with clinical outcomes. RESULTS: WGS estimates of telomere length correlated with quantitative PCR (R=0.65) and Southern blot (R=0.71) measurements. Rare deleterious qualifying variants were found in 14% of the total cohort, with a five-fold increase in those with a family history of disease versus those without (25% versus 5%). Most rare qualifying variants (85%) were found in telomere-related genes and were associated with shorter telomere lengths. Rare qualifying variants had a greater effect on telomere length than a polygenic risk score calculated using 20 common variants previously associated with telomere length. The common variant polygenic risk score predicted telomere length only in sporadic disease. Reduced transplant-free survival was associated with rare qualifying variants, shorter quantitative PCR-measured telomere lengths and absence of the MUC5B promoter (rs35705950) single nucleotide polymorphism, but not with WGS-estimated telomere length or the common variant polygenic risk score. Disease progression was associated with both measures of telomere length (quantitative PCR measured and WGS estimated), rare qualifying variants and the common variant polygenic risk score. CONCLUSION: As a single test, WGS can inform pulmonary fibrosis genetic-mediated risk, evaluate the functional effect of telomere-related variants by estimating telomere length, and prognosticate clinically relevant disease outcomes.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Telómero/genética , Secuenciación Completa del Genoma , Factores de Riesgo , Predisposición Genética a la Enfermedad
3.
Cell Prolif ; 57(4): e13570, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37905494

RESUMEN

Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.


Asunto(s)
Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Fosfatidilcolinas , Animales , Ratones , Cisplatino/farmacología , Leucotrieno B4 , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral
4.
MedComm (2020) ; 5(9): e687, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156763

RESUMEN

The newly identified XBB.1.16-containing sublineages, including XBB.1.5, have become the prevailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in circulation. Unlike previous Omicron XBB variants (e.g., XBB.1.5 and XBB.1.9) harboring the F486P substitution, XBB.1.16 also carries a T478R substitution in the receptor-binding domain (RBD). Numerous researchers have delved into the high transmissibility and immune evasion of XBB.1.16 subvariant. Therefore, developing a new vaccine targeting XBB.1.16, including variants of concern (VOCs), is paramount. In our study, we engineered a recombinant protein by directly linking the S-RBD sequence of the XBB.1.16 strain of SARS-CoV-2 to the sequences of two heptad repeat sequences (HR1 and HR2) from the SARS-CoV-2 S2 subunit. Named the recombinant RBDXBB.1.16-HR/trimeric protein, this fusion protein autonomously assembles into a trimer. Combined with an MF59-like adjuvant, the RBDXBB.1.16-HR vaccine induces a robust humoral immune response characterized by high titers of neutralizing antibodies against variant pseudovirus and authentic VOCs and cellular immune responses. Additionally, a fourth heterologous RBDXBB.1.16-HR vaccine enhances both humoral and cellular immune response elicited by three-dose mRNA vaccines. These findings demonstrate that the recombinant RBDXBB.1.16-HR protein, featuring the new T478R mutation, effectively induces solid neutralizing antibodies to combat newly emerged XBB variants.

5.
MedComm (2020) ; 5(5): e539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38680520

RESUMEN

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

6.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188799, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36103908

RESUMEN

Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.


Asunto(s)
Quimiocina CXCL13 , Neoplasias , Quimiocina CXCL13/genética , Humanos , Ligandos , Neoplasias/genética , Receptores CXCR5/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA