Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 84(8): 1570-1584.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38537638

RESUMEN

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico , Separación de Fases , Animales , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
2.
Nature ; 632(8025): 528-535, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048826

RESUMEN

Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.

3.
Proc Natl Acad Sci U S A ; 121(3): e2314245121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194460

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is a highly conserved DNA repair pathway that removes bulky lesions in the transcribed genome. Cockayne syndrome B protein (CSB), or its yeast ortholog Rad26, has been known for decades to play important roles in the lesion-recognition steps of TC-NER. Another conserved protein ELOF1, or its yeast ortholog Elf1, was recently identified as a core transcription-coupled repair factor. How Rad26 distinguishes between RNA polymerase II (Pol II) stalled at a DNA lesion or other obstacles and what role Elf1 plays in this process remains unknown. Here, we present cryo-EM structures of Pol II-Rad26 complexes stalled at different obstacles that show that Rad26 uses a common mechanism to recognize a stalled Pol II, with additional interactions when Pol II is arrested at a lesion. A cryo-EM structure of lesion-arrested Pol II-Rad26 bound to Elf1 revealed that Elf1 induces further interactions between Rad26 and a lesion-arrested Pol II. Biochemical and genetic data support the importance of the interplay between Elf1 and Rad26 in TC-NER initiation. Together, our results provide important mechanistic insights into how two conserved transcription-coupled repair factors, Rad26/CSB and Elf1/ELOF1, work together at the initial lesion recognition steps of transcription-coupled repair.


Asunto(s)
Reparación por Escisión , Paro Cardíaco , Humanos , Cognición , Daño del ADN , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética
4.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520738

RESUMEN

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Asunto(s)
Mutación , Empalme del ARN , Atrofias Musculares Espinales de la Infancia , Proteína 2 para la Supervivencia de la Neurona Motora , Femenino , Humanos , Alelos , Compuestos Azo , Exones/genética , Células HEK293 , Pirimidinas/uso terapéutico , Empalme del ARN/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Recién Nacido , Lactante
5.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177920

RESUMEN

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistencia a la Sequía , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sequías , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Nucleic Acids Res ; 52(3): 1471-1482, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38197271

RESUMEN

Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.


Asunto(s)
Proteínas de Escherichia coli , Nitratos , Activación Transcripcional , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitratos/metabolismo
7.
Plant Physiol ; 195(4): 3053-3071, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38717740

RESUMEN

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid-responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Glycine max/genética , Glycine max/fisiología , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Transducción de Señal/genética
8.
PLoS Comput Biol ; 20(7): e1012311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083536

RESUMEN

Like other tropical and subtropical regions, influenza viruses can circulate year-round in Hong Kong. However, during the COVID-19 pandemic, there was a significant decrease in influenza activity. The objective of this study was to retrospectively forecast influenza activity during the year 2020 and assess the impact of COVID-19 public health social measures (PHSMs) on influenza activity and hospital admissions in Hong Kong. Using weekly surveillance data on influenza virus activity in Hong Kong from 2010 to 2019, we developed a statistical modeling framework to forecast influenza virus activity and associated hospital admissions. We conducted short-term forecasts (1-4 weeks ahead) and medium-term forecasts (1-13 weeks ahead) for the year 2020, assuming no PHSMs were implemented against COVID-19. We estimated the reduction in transmissibility, peak magnitude, attack rates, and influenza-associated hospitalization rate resulting from these PHSMs. For short-term forecasts, mean ambient ozone concentration and school holidays were found to contribute to better prediction performance, while absolute humidity and ozone concentration improved the accuracy of medium-term forecasts. We observed a maximum reduction of 44.6% (95% CI: 38.6% - 51.9%) in transmissibility, 75.5% (95% CI: 73.0% - 77.6%) in attack rate, 41.5% (95% CI: 13.9% - 55.7%) in peak magnitude, and 63.1% (95% CI: 59.3% - 66.3%) in cumulative influenza-associated hospitalizations during the winter-spring period of the 2019/2020 season in Hong Kong. The implementation of PHSMs to control COVID-19 had a substantial impact on influenza transmission and associated burden in Hong Kong. Incorporating information on factors influencing influenza transmission improved the accuracy of our predictions.


Asunto(s)
COVID-19 , Predicción , Hospitalización , Gripe Humana , Pandemias , SARS-CoV-2 , Estaciones del Año , Humanos , Hong Kong/epidemiología , Gripe Humana/epidemiología , Gripe Humana/transmisión , COVID-19/epidemiología , COVID-19/transmisión , Hospitalización/estadística & datos numéricos , Predicción/métodos , Estudios Retrospectivos , Modelos Estadísticos , Biología Computacional
9.
Nano Lett ; 24(5): 1776-1783, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284760

RESUMEN

Donor-acceptor (D-A) copolymers doped with n-type dopants are widely sought after for their potential in organic thermoelectric devices. However, the existing structural disorder significantly hampers their charge transport and thermoelectric performance. In this Letter, we propose a mechanism to mitigate this disorder through side chain engineering. Utilizing molecular dynamics simulations, we demonstrate that strong Coulomb interactions between counterions and charged polymer backbones induce a transition in the stacking arrangement of the polymer backbones from a slipped to a vertical configuration. However, the presence of side chain steric hindrance impedes the formation of closely packed and ordered vertical stacking arrangements, resulting in greater distances between adjacent backbones and a higher level of structural disorder in the doped films. Therefore, we propose minimizing side chain steric hindrance to enhance the structural order in doped films. Our findings provide essential insights for advancing high-performance thermoelectric polymers.

10.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166126

RESUMEN

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

11.
Nano Lett ; 24(33): 10169-10176, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109989

RESUMEN

Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.

12.
Nano Lett ; 24(15): 4537-4545, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568783

RESUMEN

An interfacial solar steam generation evaporator for seawater desalination has attracted extensive interest in recent years. Nevertheless, challenges still remain in relatively low evaporation rate, unsatisfactory energy conversion efficiency, and salt accumulation. Herein, we have demonstrated a biomimetic bilayer composite aerogel consisting of bottom hydrophilic and vertically aligned EVOH channels and an upper hydrophobic conical Fe3O4 array. Thanks to the design merits, the 3D Fe3O4/V-EVOH evaporator exhibits a high evaporation rate of ∼2.446 kg m-2 h-1 and an impressive solar energy conversion efficiency of ∼165.5% under 1 sun illumination, which is superior to those of state-of-the-art evaporators reported so far. Moreover, the asymmetrical wettability not only allows the evaporator to self-float on the water but also facilitates the salt ion diffusion in the channels; thus, the evaporator shows no salt crystals on its surface and only a 6% decrease in evaporation performance even after the salt concentration increases from 0 to 10.0 wt %.

13.
Nano Lett ; 24(21): 6344-6352, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687224

RESUMEN

Anisotropic two-dimensional materials present a diverse range of physical characteristics, making them well-suited for applications in photonics and optoelectronics. While mechanical properties play a crucial role in determining the reliability and efficacy of 2D material-based devices, the fracture behavior of anisotropic 2D crystals remains relatively unexplored. Toward this end, we herein present the first measurement of the anisotropic fracture toughness of 2D Ta2NiSe5 by microelectromechanical system-based tensile tests. Our findings reveal a significant in-plane anisotropic ratio (∼3.0), accounting for crystal orientation-dependent crack paths. As the thickness increases, we observe an intriguing intraplanar-to-interplanar transition of fracture along the a-axis, manifesting as stepwise crack features attributed to interlayer slippage. In contrast, ruptures along the c-axis surprisingly exhibit persistent straightness and smoothness regardless of thickness, owing to the robust interlayer shear resistance. Our work affords a promising avenue for the construction of future electronics based on nanoribbons with atomically sharp edges.

14.
Nano Lett ; 24(33): 10244-10250, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116288

RESUMEN

The effectiveness of the room-temperature strengthening strategy for aluminum (Al) is compromised at increased temperatures due to grain and precipitate phase coarsening. Overcoming the heightened activity of grain boundaries and dislocations poses a significant challenge in enhancing the high-temperature strength through traditional precipitation strengthening. This study presents novel strengthening strategies that integrate intergranular reinforcements, intragranular reinforcements, refined grain, and stacking faults within an (Al2O3+Al3Ti)/Al composite prepared using sol-gel and powder metallurgy technology. Excellent high-temperature tensile properties are achieved; also, a remarkable fatigue performance at increased temperatures that surpasses those of other existing Al alloys and composites is revealed. These superior characteristics can be attributed to its exceptionally stable microstructure and the synergistic strengthening mechanisms mentioned above. This work offers new insights into designing and fabricating thermally stable Al matrix composites for high-temperature applications.

15.
Nano Lett ; 24(23): 6850-6857, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38721815

RESUMEN

Solid-state polymer-based electrolytes (SSPEs) exhibit great possibilities in realizing high-energy-density solid-state lithium metal batteries (SSLMBs). However, current SSPEs suffer from low ionic conductivity and unsatisfactory interfacial compatibility with metallic Li because of the high crystallinity of polymers and sluggish Li+ movement in SSPEs. Herein, differing from common strategies of copolymerization, a new strategy of constructing a high-entropy SSPE from multivariant polymeric ligands is proposed. As a protocol, poly(vinylidene fluoride-co-hexafluoropropylene) (PH) chains are grafted to the demoed polyethylene imine (PEI) with abundant -NH2 groups via a click-like reaction (HE-PEIgPHE). Compared to a PH-based SSPE, our HE-PEIgPHE shows a higher modulus (6.75 vs 5.18 MPa), a higher ionic conductivity (2.14 × 10-4 vs 1.03 × 10-4 S cm-1), and a higher Li+ transference number (0.55 vs 0.42). A Li|HE-PEIgPHE|Li cell exhibits a long lifetime (1500 h), and a Li|HE-PEIgPHE|LiFePO4 cell delivers an initial capacity of 160 mAh g-1 and a capacity retention of 98.7%, demonstrating the potential of our HE-PEIgPHE for the SSLMBs.

16.
J Infect Dis ; 230(1): 95-102, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052717

RESUMEN

BACKGROUND: We aimed to analyze the clinical characteristics of peripheral Epstein-Barr virus (EBV)-infected lymphocyte subtypes in children with chronic active EBV infection (CAEBV). METHODS: The levels of peripheral EBV infection of CD4+ T cells, CD8+ T cells, and CD56+ natural killer (NK) cells were determined by flow cytometry and quantitative polymerase chain reaction (qPCR) in patients with CAEBV from July 2017 to July 2022. RESULTS: In total, 112 children with CAEBV were evaluated. Of these, CD4+ type, CD8+ type, and CD56+ type were defined in 44, 21, and 47 patients, respectively. Patients with CD8+ T-cell type had a significantly higher frequency of rash, while hepatomegaly was more common in patients with CD4+ T-cell type. Generally, patients with CD8+ T-cell type had the lowest overall survival rate (P = .017). Patients treated with chemotherapy and hematopoietic stem cell transplantation (HSCT) had a better prognosis (P = .001). In multivariate analysis, rash, hemophagocytic lymphohistiocytosis, CD8+ T-cell type, and no decrease of plasma EBV-DNA after treatment were independent indicators of poor prognosis (P = .002, .024, .022, and .012, respectively). CONCLUSIONS: In children with CAEBV, rash was more frequent in patients with CD8+ T-cell type, whereas patients with CD4+ T-cell type were more likely to develop hepatomegaly. Patients with CD8+ T-cell type had a poor prognosis despite receiving chemotherapy or further HSCT.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Células Asesinas Naturales , Humanos , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Masculino , Femenino , Niño , Preescolar , Herpesvirus Humano 4/inmunología , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad Crónica , Adolescente , Subgrupos Linfocitarios/inmunología , Lactante , Pronóstico , Trasplante de Células Madre Hematopoyéticas , ADN Viral/sangre , Antígeno CD56
17.
BMC Bioinformatics ; 25(Suppl 1): 100, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448823

RESUMEN

BACKGROUND: In the past decade, single nucleotide variants (SNVs) have been identified as having a significant relationship with the development and treatment of diseases. Among them, prioritizing missense variants for further functional impact investigation is an essential challenge in the study of common disease and cancer. Although several computational methods have been developed to predict the functional impacts of variants, the predictive ability of these methods is still insufficient in the Mendelian and cancer missense variants. RESULTS: We present a novel prediction method called the disease-related variant annotation (DVA) method that predicts the effect of missense variants based on a comprehensive feature set of variants, notably, the allele frequency and protein-protein interaction network feature based on graph embedding. Benchmarked against datasets of single nucleotide missense variants, the DVA method outperforms the state-of-the-art methods by up to 0.473 in the area under receiver operating characteristic curve. The results demonstrate that the proposed method can accurately predict the functional impact of single nucleotide missense variants and substantially outperforms existing methods. CONCLUSIONS: DVA is an effective framework for identifying the functional impact of disease missense variants based on a comprehensive feature set. Based on different datasets, DVA shows its generalization ability and robustness, and it also provides innovative ideas for the study of the functional mechanism and impact of SNVs.


Asunto(s)
Benchmarking , Neoplasias , Humanos , Frecuencia de los Genes , Mutación Missense , Nucleótidos
18.
BMC Bioinformatics ; 25(1): 32, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233745

RESUMEN

BACKGROUND: Epi-transcriptome regulation through post-transcriptional RNA modifications is essential for all RNA types. Precise recognition of RNA modifications is critical for understanding their functions and regulatory mechanisms. However, wet experimental methods are often costly and time-consuming, limiting their wide range of applications. Therefore, recent research has focused on developing computational methods, particularly deep learning (DL). Bidirectional long short-term memory (BiLSTM), convolutional neural network (CNN), and the transformer have demonstrated achievements in modification site prediction. However, BiLSTM cannot achieve parallel computation, leading to a long training time, CNN cannot learn the dependencies of the long distance of the sequence, and the Transformer lacks information interaction with sequences at different scales. This insight underscores the necessity for continued research and development in natural language processing (NLP) and DL to devise an enhanced prediction framework that can effectively address the challenges presented. RESULTS: This study presents a multi-scale self- and cross-attention network (MSCAN) to identify the RNA methylation site using an NLP and DL way. Experiment results on twelve RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) reveal that the area under the receiver operating characteristic of MSCAN obtains respectively 98.34%, 85.41%, 97.29%, 96.74%, 99.04%, 79.94%, 76.22%, 65.69%, 92.92%, 92.03%, 95.77%, 89.66%, which is better than the state-of-the-art prediction model. This indicates that the model has strong generalization capabilities. Furthermore, MSCAN reveals a strong association among different types of RNA modifications from an experimental perspective. A user-friendly web server for predicting twelve widely occurring human RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) is available at http://47.242.23.141/MSCAN/index.php . CONCLUSIONS: A predictor framework has been developed through binary classification to predict RNA methylation sites.


Asunto(s)
Metilación de ARN , ARN , Humanos , ARN/genética , Redes Neurales de la Computación , Metilación , Procesamiento Postranscripcional del ARN
19.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321384

RESUMEN

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Asunto(s)
Fabaceae , Vigna , Vigna/genética , Filogenia , Respuesta al Choque por Frío , Complejo Mediador/genética , Fabaceae/genética
20.
J Am Chem Soc ; 146(10): 6955-6961, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422479

RESUMEN

Machine learning is gaining momentum in the prediction and discovery of materials for specific applications. Given the abundance of metal-organic frameworks (MOFs), computational screening of the existing MOFs for propane/propylene (C3H8/C3H6) separation could be equally important for developing new MOFs. Herein, we report a machine learning-assisted strategy for screening C3H8-selective MOFs from the CoRE MOF database. Among the four algorithms applied in machine learning, the random forest (RF) algorithm displays the highest degree of accuracy. We experimentally verified the identified top-performing MOF (JNU-90) with its benchmark selectivity and separation performance of directly producing C3H6. Considering its excellent hydrolytic stability, JNU-90 shows great promise in the energy-efficient separation of C3H8/C3H6. This work may accelerate the development of MOFs for challenging separations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA