Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 30(12): e202303717, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38072903

RESUMEN

Organic-inorganic hybrid multifunctional materials have shown significant application in lighting and sensor fields, owing to their prominent performance and diversity structures. Herein, we synthesized two multifunctional compounds: (propyl-quinuclidone)2 CdBr4 (1) and (F-butyl-quinuclidone)2 CdBr4 (2). By introducing light-emitting organic cation with flexible long chain, 1 and 2 exhibit excellent transition properties and bright blue-white fluorescence. Then, combine fluorescence lifetime and first-principal calculation, providing evidence for the electron transfer emission. Subsequently, investigated the impact of substituent carbon chain length (methyl to butyl), structural rigidity (C-C to C-F) and halide framework (Cl to I) on the fluorescence properties. Results indicate that Cd⋅⋅⋅Cd distance and structural rigidity play an important role in fluorescence. Overall, our research provides valuable insight and example for chemical modifications enhance compound performance.

2.
J Org Chem ; 89(8): 5905-5910, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38579179

RESUMEN

The total syntheses of (±)-quebrachamine and (±)-kopsiyunnanine D are reported. Key transformations include an intermolecular Horner-Wadsworth-Emmons olefination to merge the two fragments convergently and an intramolecular Mitsunobu reaction to introduce the synthetically challenging nine-membered azonane ring efficiently.

3.
Inorg Chem ; 63(6): 3083-3090, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38278552

RESUMEN

Two-dimensional double perovskites have experienced rapid development due to their outstanding optoelectronic properties and diverse structural characteristics. However, the synthesis of high-performance multifunctional compounds and the regulation of their properties still lack relevant examples. Herein, we synthesized two multifunctional compounds, (C6H14N)4AgSbBr8 (1) and (F2-C6H12N)4AgSbBr8 (2), which exhibit high solid-state phase transition temperature, bistable dielectric constant switching, second harmonic generation (SHG), and bright emission. Through H/F substitution, the transition temperature increases and achieves a smaller band gap attributed to reduced interlayer spacing. Furthermore, we investigated the broad emission mechanism of the compounds through first-principles calculation and variable-temperature fluorescence, confirming the presence of the STE1 emission. Our work provides insight into the further development of multifunctional compounds and chemical modification that enhances compound properties.

4.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38944841

RESUMEN

Four new alkaloids, arecatines A-D (1-4), were isolated from the peels of Areca catechu. Compound 1 is an unusual piperidine-pyridine hybrid alkaloid, whereas compounds 2-4 feature bis-piperidine alkaloids. Their structures were elucidated by UV, IR, HRESIMS, and NMR spectra analysis. The molecular docking analysis indicated that compound 3 exhibited the best binding affinity with the GABAA receptor, indicating its potential anti-epilepsy activity.

5.
Chemistry ; 29(17): e202203893, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36579748

RESUMEN

One dimensional (1D) organic-inorganic halide hybrid perovskites have the advantages of excellent organic cation modifiability and diversity of inorganic framework structures, which cannot be ignored in the development of multi-functional phase-transition materials in photoelectric and photovoltaic devices. Here, we have successfully modified and synthesized an organic-inorganic hybrid perovskite photoelectric multifunctional phase-transition material: [C7 H13 ONCH2 F]⋅PbBr3 (1). The synergistic effect of the order double disorder transition of organic cations and the change of the degree of distortion of the inorganic framework leads to its high temperature reversible phase-transition point of Tc =374 K/346 K and its ultra-low loss high-quality dielectric switch response. Through in-depth research and calculation, compound 1 also has excellent semiconductor characteristics with a band gap of 3.06 eV and the photoluminescence characteristics of self-trapped exciton (STE) broadband emission. Undoubtedly, this modification strategy provides a new choice for the research field of organic-inorganic hybrid perovskite reversible phase-transition photoelectric multifunctional materials with rich coupling properties.

6.
Chemistry ; 29(57): e202301499, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37493075

RESUMEN

The combination of chirality and phase-transition materials has broad application prospects. Therefore, based on the quasi-spherical theory and the thought strategy of introducing chirality, we have successfully synthesized a pair of chiral enantiomeric ligands (R/S)-triethyl-(2-hydroxypropyl)ammonium iodide, which can be combined with a tin hexachloride anion to obtain a pair of new organic-inorganic hybrid enantiomeric high-temperature plastic phase-transition materials: (R/S)-[CH3 CH(OH)CH2 N(CH2 CH3 )3 ]2 SnCl6 (1-R/1-S), which have a high temperature phase transition of Tc =384 K, crystallize in the P21 chiral space group at room temperature, and have obvious CD signals. In addition, compounds 1-R and 1-S have a good low-loss dielectric switch and broadband gap. This work is conducive to the research into chiral high-temperature reversible plastic phase-transition materials, and promotes the development of multi-functional phase-transition materials.

7.
Inorg Chem ; 62(31): 12525-12533, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37494604

RESUMEN

Switchable materials have gained significant attention due to their potential applications in data storage, sensors, and switching devices. Two-dimensional (2D) hybrid perovskites have demonstrated promising prospects for designing switchable materials, where the dynamic motion of the organic components coupled with the distortion of the inorganic framework provides the driving force for triggering multifunctional switchable properties. Herein, through the H/F substitution strategy, we report a polar 2D hybrid lead-based perovskite, (4,4-DCA)2PbBr4 (4,4-DCA = 4,4-difluorocyclohexylammonium) (1), which exhibits dual-stable behavior in a dielectric and second harmonic generation (SHG) response during the reversible phase transition process near the high Curie temperature Tc ∼ 409 K. The phase transition temperature is significantly increased by 41 K compared to the corresponding non-fluorinated (CHA)2PbBr4 (CHA = cyclohexylammonium). Remarkably, the material shows rare broad-band yellow emission under UV excitation, attributed to the induction of self-trapped exciton emission by the distortion of the [PbBr6]4- octahedra, as confirmed by the first-principles analysis. 1 also exhibited ferroelectricity with a saturation polarization value and a small coercive field. This study provides a new insight into the modification of multifunctional switchable materials through the H/F substitution strategy.

8.
Inorg Chem ; 62(27): 10847-10853, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366025

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have attracted much attention due to their excellent properties and easy synthesis. As far as we know, most documented ferroelastics mainly focus on the 3D (three-dimensional) perovskites, the 2D monolayer perovskite ferroelastics are rarely reported before. In this work, we synthesized a 2D lead-based perovskite (C5NH13Br)2PbBr4 (1) (C5NH13Br = 5-bromoamylamine cation) by introducing flexible chain organic cations. The evolution of ferroelastic domains observed by a polarized light microscope confirms that compound 1 undergoes a ferroelastic phase transition at 392/384 K. In addition, its direct band gap is 2.877 eV. Interestingly, the material emits an attractive blue light (quantum yield 5.06%) under UV light. Three structural descriptors are introduced to quantitatively analyze the relationship between structural distortion and the shape of emission peak. This work provides a way to design multifunctional perovskite-type materials.

9.
Inorg Chem ; 62(15): 6189-6195, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37014228

RESUMEN

Since the switchable spontaneous polarization of ferroelectric materials endows it with many useful properties such as a large pyroelectric coefficient, switchable spontaneous polarization, and semiconductor, it has a wide range of application prospects, and the research of high-performance molecular ferroelectric materials has become a hot spot. We obtained a 0D organic-inorganic hybrid ferroelectric [(CH3)3NCH2CH2CH3]2FeCl4 (1) with well-defined ferroelectric domains and excellent domain inversion and exhibited a relatively large spontaneous polarization (Ps = 9 µC/m-2) and a Curie temperature (Tc) of 394 K. Furthermore, compound 1 belongs to the non-centrosymmetrical space group Cmc21 and has a strong second-harmonic generation signal. Interestingly, we also performed magnetic tests on 1, which confirmed that it is a magnetic material. This work provides clues for exploring the application of high-performance molecular ferroelectric materials in future multifunctional smart devices.

10.
Molecules ; 29(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202597

RESUMEN

Peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) are important targets of lipid metabolism regulation for nonalcoholic fatty liver disease (NAFLD) therapy. In the present study, a set of novel indole ethylamine derivatives (4, 5, 8, 9) were designed and synthesized. The target product (compound 9) can effectively activate PPARα and CPT1a. Consistently, in vitro assays demonstrated its impact on the lipid accumulation of oleic acid (OA)-induced AML12 cells. Compared with AML12 cells treated only with OA, supplementation with 5, 10, and 20 µM of compound 9 reduced the levels of intracellular triglyceride (by 28.07%, 37.55%, and 51.33%) with greater inhibitory activity relative to the commercial PPARα agonist fenofibrate. Moreover, the compound 9 supplementations upregulated the expression of hormone-sensitive triglyceride lipase (HSL) and adipose triglyceride lipase (ATGL) and upregulated the phosphorylation of acetyl-CoA carboxylase (ACC) related to fatty acid oxidation and lipogenesis. This dual-target compound with lipid metabolism regulatory efficacy may represent a promising type of drug lead for NAFLD therapy.


Asunto(s)
Antipsicóticos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Metabolismo de los Lípidos , PPAR alfa , Carnitina O-Palmitoiltransferasa , Etilaminas , Ácido Oléico , Lipasa , Indoles/farmacología
11.
J Biol Inorg Chem ; 27(8): 695-704, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153767

RESUMEN

Determination of the toxicity of compounds toward cancer cells is a frequent procedure in drug discovery. For metal complexes, which are often reactive prodrugs, care has to be taken to consider reactions with components of the cell culture medium that might change the speciation of the metal complex before it is taken up by the cells. Here, we consider possible reactions between the clinical platinum drugs cisplatin and oxaliplatin with penicillin G, an antibiotic added routinely to cell culture media to prevent bacterial contamination. Platinum has a high affinity for ligands with sulfur donors. Penicillin G is an unstable thioether that degrades in a range of pathways. Nuclear magnetic resonance (NMR) and UV-Vis absorption spectroscopic studies show that reactions with cisplatin can occur within minutes to hours at 310 K, but more slowly with oxaliplatin. The identities of the Pt- adducts were investigated by mass spectrometry. The marked effect on cytotoxicity of co-incubation of cisplatin with penicillin G was demonstrated for the HeLa human cervical cancer cell line. These studies highlight the possibility that reactions with penicillin G might influence the cytotoxic activity of metal complexes determined in culture media.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Cisplatino/farmacología , Cisplatino/química , Oxaliplatino/farmacología , Oxaliplatino/química , Platino (Metal)/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Antineoplásicos/química , Penicilina G/farmacología
12.
Inorg Chem ; 61(27): 10454-10460, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762569

RESUMEN

Multifunctional materials have always been an attractive research area, but how to combine multiple excellent properties in one compound remains a considerable challenge. Organic-inorganic hybrid compounds are widely used in the design of such materials due to their rich properties and flexible assembly. Herein, two new manganese(II)-based organic-inorganic hybrid compounds, (C6NH16)2MnBr4 (1) and (C7NH18)2MnBr4 (2), are prepared by the solution method. Compounds 1 and 2 both emit extremely strong green light under UV excitation, with high quantum yields of 45.93 and 50.98%, respectively. In addition, reversible solid-state phase transitions and obvious switchable dielectric properties are shown at 378/366 and 361/352 K, respectively. The coexistence of the dual stimulus-response characteristics of temperature and light in compounds 1 and 2 opens a new path for exploring more multifunctional phase transition materials.

13.
Inorg Chem ; 59(17): 12632-12642, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32838518

RESUMEN

Multifunctional platinumIV anticancer prodrugs have the potential to enrich the anticancer properties and overcome the clinical problems of drug resistance and side effects of platinumII anticancer agents. Herein, we develop dual and triple action platinumIV complexes with targeted and biological active functionalities. One complex (PFL) that consists of cisplatin, tegafur, and lonidamine exhibits strong cytotoxicity against triple negative breast cancer (TNBC) cells. Cellular uptake and distribution studies reveal that PFL mainly accumulates in mitochondria. As a result, PFL disrupts the mitochondrial ultrastructure and induces significant alterations in the mitochondrial membrane potential, which further leads to an increase in production of reactive oxygen species (ROS) and a decrease in ATP synthesis in MDA-MB-231 TNBCs. Western blot analysis reveals the formation of ternary complex of thymidylate synthase, which shows the intracellular conversion of tegafur into 5-FU after its release from PFL. Furthermore, treatment with PFL impairs the mitochondrial function, leading to the inhibition of glycolysis and mitochondrial respiration and induction of apoptosis through the mitochondrial pathway. The RNA-sequencing experiment shows that PFL can perturb the pathways involved in DNA synthesis, DNA damage, metabolism, and transcriptional activity. These findings demonstrate that PFL intervenes in several cellular processes including DNA damage, thymidylate synthase inhibition, and perturbation of the mitochondrial bioenergetics to kill the cancer cells. The results highlight the significance of a triple-action prodrug for efficient anticancer therapy for TNBCs.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Inhibidores Enzimáticos/química , Platino (Metal)/química , Profármacos/metabolismo , Timidilato Sintasa/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN , Liberación de Fármacos , Fluorouracilo/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Profármacos/química , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética/efectos de los fármacos
14.
Chemistry ; 25(28): 7012-7022, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30913329

RESUMEN

The chemo-anti-inflammatory strategy is attracting ever more attention for the treatment of cancer. Here, two cyclometalated IrIII complexes Ir2 and Ir3 formed by conjugation of Ir1 with two antiphlogistics (aspirin and salicylic acid) have been designed. Ir2 and Ir3 exhibit higher antitumor and anti-inflammatory potencies than a mixture of Ir1 and aspirin/salicylic acid. We show that they can be hydrolyzed, accumulate in mitochondria, and induce mitochondrial dysfunction. Due to their intense long-lived phosphorescence, Ir2 and Ir3 can track mitochondrial morphological changes. Phosphorescence lifetime imaging shows that Ir2 and Ir3 can aggregate during mitochondrial dysfunction. As expected, Ir2 and Ir3 exhibit immunomodulatory properties by regulating the activity of immune factors. Both Ir2 and Ir3 can induce caspase-dependent apoptosis and caspase-independent paraptosis and inhibit several events related to metastasis. Moreover, Ir2 and Ir3 show potent tumor growth inhibition in vivo. Our study demonstrates that the combination of mitochondrial-targeting and immunomodulatory activities is feasible to develop multifunctional metal-based anticancer agents.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos/uso terapéutico , Aspirina/uso terapéutico , Complejos de Coordinación/uso terapéutico , Inmunomodulación/efectos de los fármacos , Iridio/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Aspirina/química , Aspirina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Femenino , Humanos , Iridio/química , Iridio/farmacología , Mediciones Luminiscentes/métodos , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Imagen Óptica/métodos
15.
J Am Chem Soc ; 139(12): 4282-4285, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28252292

RESUMEN

The first total syntheses of Lycopodium alkaloids palhinine A, palhinine D, and their C3-epimers have been divergently achieved through the use of a connective transform to access a pivotal hexacyclic isoxazolidine precursor. A microwave-assisted regio- and stereoselective intramolecular nitrone-alkene cycloaddition was tactically orchestrated as a key step to install the crucial 10-oxa-1-azabicyclo[5.2.1]decane moiety embedded in the conformationally rigid isotwistane framework, demonstrating the feasibility of constructing the highly strained medium-sized ring by introduction of an oxygen bridging linker to relieve the transannular strain in the polycyclic scaffold. Subsequent N-O bond cleavage provided the synthetically challenging nine-membered azonane ring system bearing the requisite C3 hydroxyl group. Late-stage transformations featuring a chemo- and stereoselective reduction of the pentacyclic ß-diketone secured the availability of our target molecules.


Asunto(s)
Alcaloides/síntesis química , Alcaloides/química , Estructura Molecular
16.
J Org Chem ; 81(13): 5655-62, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27224285

RESUMEN

A novel strategy based on phase transfer catalysis for the diastereoselective and enantioselective direct assembly of unsymmetric ß,ß-diaryl-α-amino acid esters via 1,6-conjugate addition of para-quinone methides and glycine derivatives is described. This protocol also provides an alternative route to the synthetically interesting functionalized chiral tetrahydroisoquinoline and its analogues.

17.
Dalton Trans ; 52(32): 11196-11202, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522327

RESUMEN

Ferroelectric materials are not only important electronic functional materials, but also considered as the most promising intelligent basic materials, because they show good application prospects. Therefore, it is an urgent task to develop and explore new ferroelectric material systems. In addition, the most important feature of crown ethers is their ability to complex with positive ions, which is extremely useful in synthesis. We report that [NH3C2H4Cl(18-crown-6)](CF3SO3) (1) has a phase transition temperature Tc = 255 K, and there is an obvious SHG switch below Tc. At the same time, the saturation polarization value Ps = 1.25 µC cm-2 is obtained from the hysteresis loop, which directly proves the ferroelectric nature of compound 1. It is noteworthy that the second harmonic response test of compound 1 shows a symmetric transition from a non-centrosymmetric to a centrosymmetric point group, that is a symmetry break from the paraelectric phase to the ferroelectric phase. This work is expected to promote the further exploration of organic crown ether ferroelectrics and provide a way to design and synthesize organic crown ether ferroelectrics.

18.
Chem Asian J ; 18(4): e202201206, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36579778

RESUMEN

Multifunctional materials are an attractive research area. Organic-inorganic hybrid perovskites are widely used in the design of these materials due to their rich properties and flexible composition. It is easy to obtain more photoelectric properties by introducing chiral groups as ligands. In this work, we synthesized chiral one-dimensional organic-inorganic hybrid perovskites, namely (R/S-3-HP)PbBr3 (1R/1S) (3-HP=3-hydroxy-piperidine). The enantiomer compounds undergo reversible phase transition at 349/336 K. Under the excitation light of 339 nm, 1R and 1S have a wide emission peak at 635 nm, showing orange light. In addition, the indirect bandgap is 3.29 eV and the SHG intensity is comparable to that of KDP. This work provides a way to design multifunctional chiral perovskite materials.

19.
Dalton Trans ; 51(17): 6860-6867, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438712

RESUMEN

Chiral organic-inorganic hybrid perovskites have gained extensive research interest due to their combination of chirality and the excellent optical, electrical and spin properties of perovskite materials, especially in two-dimensional hybrid perovskites. Herein, we report two-dimensional organic-inorganic perovskite enantiomeric ferroelectric [(R)-ß-MPA]2CdCl4 (1) and [(S)-ß-MPA]2CdCl4 (2) (MPA+ =methylphenethylammonium). Their mirror relationships are verified by both circular dichroism (CD) and crystal structures. At the same time, the two exhibit very similar ferroelectricity and related properties, including high Curie temperature (343 K), large spontaneous polarization (4.65 µC cm-2), and low coercive force field (13 kV cm-1). Unusually, at room temperature the crystal phase is monoclinic with the space group C2 and above the phase transition temperature it is triclinic with the space group P1, which means that the symmetry decreases with the increase of temperature. In addition, it exhibits a flexible switchable SHG response, while [(R)-ß-MPA]2CdCl4 and [(S)-ß-MPA]2CdCl4 have wide band gaps of 4.21 and 4.26 eV, respectively, mainly contributed by inorganic CdCl6 octahedra. This discovery opens a new way for the construction of two-dimensional enantiomeric molecular ferroelectrics.

20.
Chem Sci ; 12(30): 10259-10265, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34377413

RESUMEN

The construction of an isoquinoline skeleton typically starts with benzene derivatives as substrates with the assistance of acids or transition metals. Disclosed here is a concise approach to prepare isoquinoline analogues by starting with pyridines to react with ß-ethoxy α,ß-unsaturated carbonyl compounds under basic conditions. Multiple substitution patterns and a relatively large number of functional groups (including those sensitive to acidic conditions) can be tolerated in our method. In particular, our protocol allows for efficient access to tricyclic isoquinolines found in hundreds of natural products with interesting bioactivities. The efficiency and operational simplicity of introducing structural complexity into the isoquinoline frameworks can likely enable the collective synthesis of a large set of natural products. Here we show that fredericamycin A could be obtained via a short route by using our isoquinoline synthesis as a key step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA