Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
PLoS Pathog ; 18(4): e1010446, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377920

RESUMEN

Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.


Asunto(s)
Virus de la Influenza A , Proteínas Inhibidoras de STAT Activados , Sumoilación , Replicación Viral , Animales , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Ratones , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Virulencia
3.
PLoS Pathog ; 17(2): e1009336, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571308

RESUMEN

Posttranslational modifications, such as SUMOylation, play specific roles in the life cycle of invading pathogens. However, the effect of SUMOylation on the adaptation, pathogenesis, and transmission of influenza A virus (IAV) remains largely unknown. Here, we found that a conserved lysine residue at position 612 (K612) of the polymerase basic protein 1 (PB1) of IAV is a bona fide SUMOylation site. SUMOylation of PB1 at K612 had no effect on the stability or cellular localization of PB1, but was critical for viral ribonucleoprotein (vRNP) complex activity and virus replication in vitro. When tested in vivo, we found that the virulence of SUMOylation-defective PB1/K612R mutant IAVs was highly attenuated in mice. Moreover, the airborne transmission of a 2009 pandemic H1N1 PB1/K612R mutant virus was impaired in ferrets, resulting in reversion to wild-type PB1 K612. Mechanistically, SUMOylation at K612 was essential for PB1 to act as the enzymatic core of the viral polymerase by preserving its ability to bind viral RNA. Our study reveals an essential role for PB1 K612 SUMOylation in the pathogenesis and transmission of IAVs, which can be targeted for the design of anti-influenza therapies.


Asunto(s)
Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , ARN Viral/metabolismo , Sumoilación , Proteínas Virales/metabolismo , Replicación Viral , Animales , Perros , Femenino , Hurones , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , ARN Viral/genética , Proteínas Virales/química , Proteínas Virales/genética , Acoplamiento Viral
4.
J Environ Manage ; 316: 115219, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35537272

RESUMEN

The influence of Cl- on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl- concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl- complexing Fe2+ increased the formation path of sulfate radical (SO4·-) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl- complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl- reacted with SO4·- and increased the steady-state concentration of chlorine radicals (8.09 × 10-13 M [·Cl]ss at 1.41 mM Cl-), while at high concentration of Cl-, the contents of SO4·-, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·-) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·-. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.


Asunto(s)
Cloruros , Contaminantes Químicos del Agua , Cloro , Radicales Libres , Radical Hidroxilo , Oxidación-Reducción
5.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31666373

RESUMEN

The low-pathogenic H7N9 influenza viruses that emerged in 2013 acquired an insertion of four amino acids in their hemagglutinin cleavage site and thereby became highly pathogenic to chickens in 2017. Previous studies indicated that these highly pathogenic H7N9 viruses are virulent in chickens but have distinct pathotypes in mice. A/chicken/Guangdong/SD098/2017 (CK/SD098) is avirulent, with a 50% mouse lethal dose (MLD50) of >7.5 log10 50% egg infectious dose (EID50), whereas A/chicken/Hunan/S1220/2017 (CK/S1220) is virulent in mice, with an MLD50 of 3.2 log10 EID50 In this study, we explored the genetic determinants that contribute to the difference in virulence between these two H7N9 viruses by generating a series of reassortants and mutants in the CK/S1220 virus background and testing their virulence in mice. We found that the reassortant CK/1220-SD098-NP, carrying the nucleoprotein (NP) of CK/SD098, was avirulent in mice, with an MLD50 of >107.5 EID50 The NPs of these two viruses differ by two amino acids, at positions 286 and 437. We further demonstrated that the amino acid mutations A286V and T437M of NP independently slowed the process of NP import to and export from the nucleus and thus jointly impaired the viral life cycle and attenuated the virulence of these H7N9 viruses in mice. Our study identified new virulence determinants in NP and provided novel targets for the development of live attenuated vaccines and antiviral drugs against influenza viruses.IMPORTANCE The H7N9 influenza viruses that emerged in China in 2013 have caused over 1,500 human infections, with a mortality rate of nearly 40%. The viruses were initially low pathogenic but became highly pathogenic in chickens at the beginning of 2017 and caused severe disease outbreaks in poultry. Several studies suggested that the highly pathogenic H7N9 viruses have increased virulence in mammals; however, the genetic basis of the virulence of H7N9 viruses in mammals is not fully understood. Here, we found that two amino acids, 286A and 437T, in NP are prerequisites for the virulence of H7N9 viruses in mice and the mutations A286V and T437M collectively eliminate the virulence of H7N9 viruses in mice. Our study further demonstrated that the virulence of influenza viruses is a polygenic trait, and the newly identified virulence-related residues in NP may provide new targets for attenuated influenza vaccine and antiviral drug development.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Mutación Missense , Infecciones por Orthomyxoviridae/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Sustitución de Aminoácidos , Animales , Pollos , Perros , Células HEK293 , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/genética , Proteínas de Unión al ARN/genética , Vacunas Atenuadas/genética , Vacunas Atenuadas/metabolismo , Proteínas del Núcleo Viral/genética
6.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694949

RESUMEN

Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with ß-arrestin1 and that ß-arrestin1 interacted with the ß2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either ß-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the ß-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-ß-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.


Asunto(s)
Endocitosis , Virus de la Influenza A/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Internalización del Virus , Células A549 , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Animales , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Células RAW 264.7 , Receptores Acoplados a Proteínas G/genética , Replicación Viral/fisiología , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
7.
Rapid Commun Mass Spectrom ; 35(6): e9011, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33232557

RESUMEN

RATIONALE: The research area of ion clusters has helped to enrich the study of chemical bonding theory, clarify the crystal nucleation process and investigate the cluster ion-molecule reactions. The mass spectrometry (MS) technique, especially high-resolution MS, is an important method for investigating ion clusters in the gas phase. As polyoxometalates (POMs) have been attracting considerable interest in biochemistry, medicine and materials science due to their excellent structural and electronic features it is important to characterize these clusters by MS. METHODS: Singly negatively charged molybdenum-containing and tungsten-containing ion clusters with different matrices were produced by Keggin-type silicopolyoxometalate anions under matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) conditions. RESULTS: The matrices displayed an obvious influence on the formation of ion clusters. It was found that the molybdenum-containing ion species [(HSiO3 )(MoO3 )n ]- , [(SiO2 )m (MoO3 )n (H2 O)x ] -• , [(OH)(MoO3 )n ]-• , [(MoO3 )n ]-• , and [Hx SiMoy Oz ]- were the main ion series in the mass spectra. For the tungsten-containing ion clusters, [(HSiO3 )(WO3 )n ]- , [(C8 H5 Om )(WO3 )n (H2 O)x ]- , [(OH)(WO3 )n ]- , and [(WO3 )n ]-• were the main ion species in the mass spectra, and a series of organic-inorganic hybrid tungsten-containing ion clusters [(C8 H5 Om )(WO3 )n (H2 O)x ]- were generated by the interaction of DHAP and THAP matrices with tungstate anions. Furthermore, the most abundant species (magic number) in each ion series indicated that they might adopt more stable structures than other relevant clusters. CONCLUSIONS: Keggin-type silicopolyoxometalate anions can produce several series of singly charged molybdenum-containing/tungsten-containing ion clusters in negative-ion generating mode under MALDI conditions. It is proposed that the "Lucky Survivors" hypothesis may be used to illustrate the generation of ion clusters in the gas phase during the early stages of plume expansion. In addition, clear evidence of hydrogen transfer and electron capture to POMs was found in the obtained MALDI mass spectra. These results highlight the utility of the MALDI-FT method for obtaining novel ion clusters and also show the stability of these clusters.

8.
Rapid Commun Mass Spectrom ; 35(1): e8960, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33002251

RESUMEN

RATIONALE: The Maillard reaction plays an important role in food, physiology and traditional Chinese medicine, and its primary reaction products are formed through Amadori rearrangement by reducing sugars and amino acids. The analysis of the characteristic fragmentation and of the glycosidic bond configuration of Amadori compounds will promote their fast discovery and identification by mass spectrometry. METHODS: Four Amadori compounds that reduce disaccharides and proline/tryptophan were used to investigate the fragmentation mechanisms via tandem mass spectrometry (MS/MS) with different alkali metal ion adducts. Cu2+ could be used to distinguish glycosidic bond configurations of the reducing disaccharides in the full-scan mass spectra. Quantum calculations were also conducted for a single Amadori compound with Cu2+ for analysis of the most optimized configurations and binding energies of metal complexes. RESULTS: MS/MS analysis of Amadori-alkali metal complexes revealed that the radius of the alkali metal ions had profound effects on the degree of fragmentation of such compounds, among which lithium-cationized ions produced the most extensive fragmentation. Amadori compounds with different glycosidic bonds formed differently proportioned metal complexes with Cu2+ , and the complexity of the copper complexes containing tryptophan moieties was higher than that of those containing proline moieties in the mass spectra. Quantum calculations showed that Amadori compounds with ß-configurations can form more binding sites with Cu2+ than those with α-configurations, thus making the metal complex with a single ligand more stable. In addition, the chelation of tryptophan with copper ions increased the coordination binding energy, which showed that α-configured Amadori compounds were readily able to form multi-ligand copper complexes. CONCLUSIONS: Metal-ion-assisted analysis provides crucial information for structural and anomeric analysis of Amadori compounds by electrospray ionization mass spectrometry. Elucidation of binding sites and binding energies by quantum calculations has significantly improved the knowledge of metal complexes in the gas phase and provides background information for determining the glycosidic configuration of Amadori isomers.


Asunto(s)
Disacáridos , Productos Finales de Glicación Avanzada , Metales/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Disacáridos/análisis , Disacáridos/química , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/química , Reacción de Maillard , Espectrometría de Masas en Tándem/métodos
9.
Andrologia ; 53(11): e14227, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34469009

RESUMEN

The role of circular RNA (circRNA) pappalysin 1 (circ-PAPPA; hsa_circ_0088233) in prostate cancer (PCa) cells was explored in the current study. Circ-PAPPA abundance was markedly enhanced in PCa. Circ-PAPPA interference restrained cell viability, proliferation, motility and glycolysis while elevated the apoptosis rate of PCa cells. Circ-PAPPA negatively regulated microRNA-515-5p (miR-515-5p) abundance. MiR-515-5p silencing largely diminished circ-PAPPA knockdown-mediated effects in PCa cells. MiR-515-5p directly bound to FKBP prolyl isomerase 1A (FKBP1A). MiR-515-5p overexpression-mediated impacts were partly counteracted by FKBP1A overexpression. Circ-PAPPA silencing reduced FKBP1A protein level partly by elevating miR-515-5p expression. Circ-PAPPA knockdown significantly restrained the tumour growth in vivo. Circ-PAPPA elevated the malignant phenotypes of PCa cells by sequestering miR-515-5p to induce the expression of FKBP1A.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Circular , Proliferación Celular , Glucólisis , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Proteínas de Unión a Tacrolimus/genética
10.
PLoS Pathog ; 14(1): e1006851, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352288

RESUMEN

Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin ß, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Células A549 , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Perros , Regulación hacia Abajo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , Unión Proteica , Transporte de Proteínas
11.
Circ Res ; 121(4): 376-391, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28663367

RESUMEN

RATIONALE: Recent advances have improved our ability to generate cardiomyocytes from human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). However, our understanding of the transcriptional regulatory networks underlying early stages (ie, from mesoderm to cardiac mesoderm) of cardiomyocyte differentiation remains limited. OBJECTIVE: To characterize transcriptome and chromatin accessibility during early cardiomyocyte differentiation from hiPSCs and hESCs. METHODS AND RESULTS: We profiled the temporal changes in transcriptome and chromatin accessibility at genome-wide levels during cardiomyocyte differentiation derived from 2 hiPSC lines and 2 hESC lines at 4 stages: pluripotent stem cells, mesoderm, cardiac mesoderm, and differentiated cardiomyocytes. Overall, RNA sequencing analysis revealed that transcriptomes during early cardiomyocyte differentiation were highly concordant between hiPSCs and hESCs, and clustering of 4 cell lines within each time point demonstrated that changes in genome-wide chromatin accessibility were similar across hiPSC and hESC cell lines. Weighted gene co-expression network analysis (WGCNA) identified several modules that were strongly correlated with different stages of cardiomyocyte differentiation. Several novel genes were identified with high weighted connectivity within modules and exhibited coexpression patterns with other genes, including noncoding RNA LINC01124 and uncharacterized RNA AK127400 in the module related to the mesoderm stage; E-box-binding homeobox 1 (ZEB1) in the module correlated with postcardiac mesoderm. We further demonstrated that ZEB1 is required for early cardiomyocyte differentiation. In addition, based on integrative analysis of both WGCNA and transcription factor motif enrichment analysis, we determined numerous transcription factors likely to play important roles at different stages during cardiomyocyte differentiation, such as T and eomesodermin (EOMES; mesoderm), lymphoid enhancer-binding factor 1 (LEF1) and mesoderm posterior BHLH transcription factor 1 (MESP1; from mesoderm to cardiac mesoderm), meis homeobox 1 (MEIS1) and GATA-binding protein 4 (GATA4) (postcardiac mesoderm), JUN and FOS families, and MEIS2 (cardiomyocyte). CONCLUSIONS: Both hiPSCs and hESCs share similar transcriptional regulatory mechanisms underlying early cardiac differentiation, and our results have revealed transcriptional regulatory networks and new factors (eg, ZEB1) controlling early stages of cardiomyocyte differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Cromatina/fisiología , Células Madre Embrionarias Humanas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Transcriptoma/fisiología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/fisiología , Humanos
12.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795429

RESUMEN

Influenza A virus (IAV) matrix protein 2 (M2) plays multiple roles in the early and late phases of viral infection. Once synthesized, M2 is translocated to the endoplasmic reticulum (ER), travels to the Golgi apparatus, and is sorted at the trans-Golgi network (TGN) for transport to the apical plasma membrane, where it functions in virus budding. We hypothesized that M2 trafficking along with its secretory pathway must be finely regulated, and host factors could be involved in this process. However, no studies examining the role of host factors in M2 posttranslational transport have been reported. Here, we used a yeast two-hybrid (Y2H) system to screen for host proteins that interact with the M2 protein and identified transport protein particle complex 6A (TRAPPC6A) as a potential binding partner. We found that both TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6A delta (TRAPPC6AΔ), interact with M2. Truncation and mutation analyses showed that the highly conserved leucine residue at position 96 of M2 is critical for mediating this interaction. The role of TRAPPC6AΔ in the viral life cycle was investigated by the knockdown of endogenous TRAPPC6AΔ with small interfering RNA (siRNA) and by generating a recombinant virus that was unable to interact with TRAPPC6A/TRAPPC6AΔ. The results indicated that TRAPPC6AΔ, through its interaction with M2, slows M2 trafficking to the apical plasma membrane, favors viral replication in vitro, and positively modulates virus virulence in mice. IMPORTANCE: The influenza A virus M2 protein regulates the trafficking of not only other proteins but also itself along the secretory pathway. However, the host factors involved in the regulation of the posttranslational transport of M2 are largely unknown. In this study, we identified TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6AΔ, as interacting partners of M2. We found that the leucine (L) residue at position 96 of M2 is critical for mediating this interaction, which leads us to propose that the high level of conservation of 96L is a consequence of M2 adaptation to its interacting host factor TRAPPC6A/TRAPPC6AΔ. Importantly, we discovered that TRAPPC6AΔ can positively regulate viral replication in vitro by modulating M2 trafficking to the plasma membrane.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Proteínas Recombinantes de Fusión/química , Proteínas de Transporte Vesicular/química , Proteínas de la Matriz Viral/química , Animales , Línea Celular Tumoral , Membrana Celular/inmunología , Membrana Celular/virología , Perros , Células Epiteliales/virología , Femenino , Expresión Génica , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neuroglía/virología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Análisis de Supervivencia , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Liberación del Virus/genética , Liberación del Virus/inmunología , Replicación Viral/genética , Replicación Viral/inmunología , Red trans-Golgi/virología
13.
J Assist Reprod Genet ; 35(8): 1443-1455, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29926373

RESUMEN

OBJECTIVE: Create a model, using reprogrammed cells, to provide a platform to identify the mechanisms of CGG repeat instability amongst female fragile X mental retardation 1 gene (FMR1) premutation (PM) carriers. METHODS: Female PM carriers (with and without POI) and healthy controls were enrolled from June 2013 to April 2014. Patient-derived fibroblasts (FB) were reprogrammed to induced pluripotent stem cells (iPSC) using viral vectors, encoding KLF4, OCT4, SOX2, and MYC. FMR1 CGG repeat-primed PCR was used to assess the triplet repeat structure of the FMR1 gene. FMR1 promoter methylation (%) was determined using FMR1 methylation PCR (mPCR). Quantification of FMR1 transcripts by RT-qPCR was used to evaluate the effect of reprogramming on gene transcription, as well as to correlate patient phenotype with FMR1 expression. Production of FMR1 protein (FMRP) was determined using a liquid bead array-based immunoassay. RESULTS: Upon induction to pluripotency, all control clones exhibited maintenance of progenitor cell CGG repeat number, whereas 10 of 12 clones derived from PM carriers maintained their input CGG repeat number, one of which expanded and one contracted. As compared to parent FB, iPSC clones exhibited a skewed methylation pattern; however, downstream transcription and translation appeared unaffected. Further, the PM carriers, regardless of phenotype, exhibited similar FMR1 transcription and translation to the controls. CONCLUSIONS: This is the first study to establish a stem cell model aimed to understand FMR1 CGG repeat instability amongst female PM carriers. Our preliminary data indicate that CGG repeat number, transcription, and translation are conserved upon induction to pluripotency.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Inestabilidad Genómica/genética , Insuficiencia Ovárica Primaria/genética , Reprogramación Celular/genética , Femenino , Fibroblastos/metabolismo , Síndrome del Cromosoma X Frágil/patología , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Factor 4 Similar a Kruppel , Embarazo , Insuficiencia Ovárica Primaria/patología , Regiones Promotoras Genéticas , Repeticiones de Trinucleótidos/genética
14.
J Med Entomol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747350

RESUMEN

Culex pipiens pallens Coquillett, 1898 (Diptera: Culicidae) was the dominant health threat to mosquito species in Beijing, and it is important to unravel the spatial distribution and environmental correlations of Cx. pipiens pallens in Beijing. 3S technology methods and spatial statistics were used to clarify the distribution pattern. Subsequently, linear and spatial regression were performed to detect the environmental factors linked with the density of Cx. pipiens pallens. The same "middle peak" spatial distribution pattern was observed for Cx. pipiens pallens density at the community, subdistrict, and loop area levels in our study area. In addition, there were various correlated environmental factors at the community and subdistrict scales. At the community scale, the summary values of the Modified Normalized Difference Water Index (MNDWI) in 2 km buffer zone (MNDWI_2K) were negatively correlated, and the summary values of Normalized Difference Built-up Index (NDBI) in 800 m buffer zone (NDBI_800) was positively correlated to the Cx. pipiens pallens density. However, the summary values of Normalized Difference Vegetation Index and Nighttime Light Index significantly affected Cx. pipiens pallens density at the subdistrict scale. Our findings provide insight into the spatial distribution pattern of Cx. pipiens pallens density and its associated environmental risk factors at different spatial scales in the Haidian district of Beijing for the first time. The results could be used to predict the Cx. pipiens pallens density as well as the risk of lymphatic filariasis (LF) infection, which would help implement prevention and control measures to prevent future risks of biting and LF transmission in Beijing.

15.
Sci China Life Sci ; 67(3): 579-595, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038885

RESUMEN

Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Endosomas/metabolismo , Membranas Intracelulares , Células A549 , ARN Interferente Pequeño/metabolismo , Replicación Viral , Gripe Humana/genética
16.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798547

RESUMEN

BACKGROUND: There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS: We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.

17.
Poult Sci ; 92(11): 2892-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24135592

RESUMEN

Here, we report the first outbreak of duck plague (DP) confirmed in 4 tissue samples that were collected since August 2012 from the northwestern region of Shandong province, China. Among these, 3 were collected from commercial Jin-ding variety layer ducks and one from Cherry Valley meat-breeding ducks. The sick ducks (7 to 49 wk old) were characterized by typical DP symptoms and necroscopic features. The flocks experienced high morbidity and mortality rates, and decreased production performance, which led to tremendous economic losses. The diagnosis of DP infection was confirmed by comprehensive analyses of epidemiological data, clinical signs, necroscopic features, histopathological examinations, and viral isolation and identification. According to the laws of the People's Republic of China on Animal Epidemic Prevention, emergency measures were implemented to control the outbreak, which included slaughter of the infected flocks and proper disposal of the bodies, manure, and other wastes, disinfection and thorough cleaning of the duck facilities, fields, tools, utensils, and devices, as well as emergency vaccination of the threatened flocks and the implementations of revised immunization procedures. Possible causes of the DP outbreak and the prevalence of the virus in Shandong province were also analyzed and are discussed herein.


Asunto(s)
Patos , Mardivirus/aislamiento & purificación , Enfermedad de Marek/diagnóstico , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/prevención & control , Animales , China/epidemiología , Femenino , Pruebas de Inhibición de Hemaglutinación/veterinaria , Masculino , Mardivirus/clasificación , Mardivirus/fisiología , Enfermedad de Marek/epidemiología , Enfermedad de Marek/virología , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Prevalencia
18.
BMJ Open ; 13(7): e072897, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37518088

RESUMEN

INTRODUCTION: Sepsis is a life-threatening immune disorder resulting from an dysregulated host response to infection. Adjuvant therapy is a valuable complement to sepsis treatment. Lipoic acid has shown potential in attenuating sepsis-induced immune dysfunction and organ injury in vivo and in vitro studies. However, clinical evidence of lipoic acid injection in sepsis treatment is lacking. Hence, we devised a randomised controlled trial to evaluate the efficacy and safety of lipoic acid injection in improving the prognosis of sepsis or septic shock patients. METHODS AND ANALYSIS: A total of 352 sepsis patients are planned to be recruited from intensive care units (ICUs) at eight tertiary hospitals in China for this trial. Eligible participants will undergo randomisation in a 1:1 ratio, allocating them to either the control group or the experimental group. Both groups received routine care, with the experimental group also receiving lipoic acid injection and the control group receiving placebo. The primary efficacy endpoint is 28-day all-cause mortality. The secondary efficacy endpoints are as follows: ICU and hospital mortality, ICU and hospital stay, new acute kidney injury in ICU, demand and duration of life support, Sequential Organ Failure Assessment (SOFA)/Acute Physiology and Chronic Health Evaluation II (APACHE II) and changes from baseline (ΔSOFA/ΔApache II), arterial blood lactate (LAC) and changes from baseline (ΔLAC), blood procalcitonin, high-sensitivity C-reactive protein, interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) and changes from baseline on day 1 (D1), D3, D5 and D7. Clinical safety will be assessed through analysis of adverse events. ETHICS AND DISSEMINATION: The study was approved by the Ethics Committee of Maoming People's Hospital (approval no. PJ2020MI-019-01). Informed consent will be obtained from the participants or representatives. The findings will be disseminated through academic conferences or journal publications. TRIAL REGISTRATION: ChiCTR2000039023.


Asunto(s)
Sepsis , Ácido Tióctico , Humanos , Ácido Tióctico/uso terapéutico , Método Simple Ciego , Pronóstico , Unidades de Cuidados Intensivos , Sepsis/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Emerg Microbes Infect ; 12(2): 2270073, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823597

RESUMEN

Influenza A viruses (IAVs) continue to cause tremendous economic losses to the global animal industry and respiratory diseases and deaths among humans. The nuclear import of the vRNP complex, composed of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP), and viral RNA, is essential for the efficient replication of IAV. Host factors involved in this process can be targeted for the development of countermeasures against IAV infection. Here, we found that Ankyrin Repeat and BTB Domain Containing 1 (ABTB1) promotes the replication of IAV, and positively regulates the nuclear import of the vRNP complex. ABTB1 did not interact directly with NP, indicating that ABTB1 plays an indirect role in facilitating the nuclear import of the vRNP complex. Immunoprecipitation and mass spectrometry revealed that Tripartite Motif Containing 4 (TRIM4) interacts with ABTB1. We found that TRIM4 relies on its E3 ubiquitin ligase activity to inhibit the replication of IAV by targeting and degrading NP within the incoming vRNP complex as well as the newly synthesized NP. ABTB1 interacted with TRIM4, leading to TRIM4 degradation through the proteasome system. Notably, ABTB1-mediated degradation of TRIM4 blocked the effect of TRIM4 on NP stability, and largely counteracted the inhibitory effect of TRIM4 on IAV replication. Our findings define a novel role for ABTB1 in aiding the nuclear import of the vRNP complex of IAV by counteracting the destabilizing effect of TRIM4 on the viral NP protein.


Asunto(s)
Virus de la Influenza A , Nucleoproteínas , Animales , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus de la Influenza A/fisiología , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Unión Proteica , Replicación Viral/fisiología , Proteínas Represoras/metabolismo
20.
Cell Rep ; 42(12): 113466, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38039131

RESUMEN

Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.


Asunto(s)
Agregado de Proteínas , Proteómica , Humanos , Mutación/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA