Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 81(13): 2736-2751.e8, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932349

RESUMEN

Cholesterol metabolism is tightly associated with colorectal cancer (CRC). Nevertheless, the clinical benefit of statins, the inhibitor of cholesterol biogenesis mevalonate (MVA) pathway, is inconclusive, possibly because of a lack of patient stratification criteria. Here, we describe that YAP-mediated zinc finger MYND-type containing 8 (ZMYND8) expression sensitizes intestinal tumors to the inhibition of the MVA pathway. We show that the oncogenic activity of YAP relies largely on ZMYND8 to enhance intracellular de novo cholesterol biogenesis. Disruption of the ZMYND8-dependent MVA pathway greatly restricts the self-renewal capacity of Lgr5+ intestinal stem cells (ISCs) and intestinal tumorigenesis. Mechanistically, ZMYND8 and SREBP2 drive the enhancer-promoter interaction to facilitate the recruitment of Mediator complex, thus upregulating MVA pathway genes. Together, our results establish that the epigenetic reader ZMYND8 endows YAP-high intestinal cancer with metabolic vulnerability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Colorrectales/metabolismo , Ácido Mevalónico/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ratones , Ratones Transgénicos , Proteínas Supresoras de Tumor/genética , Proteínas Señalizadoras YAP
2.
Plant Cell ; 36(2): 427-446, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37851863

RESUMEN

In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Lipasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidrolasas de Éster Carboxílico/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología
3.
Opt Lett ; 39(18): 5375-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26466276

RESUMEN

A simultaneous phase-shifting dual-wavelength interferometry based on two-step demodulation algorithm is proposed in this Letter. First, two lasers with different wavelengths go through the same inline phase-shifting interference system simultaneously, and a sequence of five frames of simultaneous phase-shifting dual-wavelength interferograms (SPSDWIs) with the special phase shifts are captured by a monochrome CCD. Subsequently, using the subtraction between the first SPSDWI and the other SPSDWI, each wavelength of two frames of single-wavelength interference images (SWIIs) without the background can be achieved. Finally, using two-step demodulation algorithm, the wrapped phase of each single-wavelength can be determined easily and quickly with high accuracy.

4.
Oncogene ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068217

RESUMEN

Castration-resistant prostate cancer (CRPC) nearly inevitably develops after long-term treatment with androgen deprivation therapy (ADT), leading to significant mortality. Investigating the mechanisms driving CRPC development is imperative. Here, we determined that the pioneer transcription factor GATA2, which is frequently amplified in CRPC patients, inhibits interferon (IFN)-ß-mediated antitumor immunity, thereby promoting CRPC progression. Employing a genetically engineered mouse model (GEMM), we demonstrated that GATA2 overexpression hindered castration-induced cell apoptosis and tumor shrinkage, facilitating tumor metastasis and CRPC development. Notably, GATA2 drives castration resistance predominantly via repressing castration-induced activation of IFN-ß signaling and CD8+ T-cell infiltration. This finding aligns with the negative correlation between GATA2 expression and IFNB1 expression, as well as CD8+ T-cell infiltration in CRPC patients. Mechanistically, GATA2 recruited PIAS1 as corepressor, and reprogramed the cistrome of IRF3, a key transcription factor of the IFN-ß axis, in an androgen-independent manner. Furthermore, we identified a novel silencer element that facilitated the function of GATA2 and PIAS1 through looping to the IFNB1 promoter. Importantly, depletion of GATA2 augmented antitumor immunity and attenuated CRPC development. Consequently, our findings elucidate a novel mechanism wherein GATA2 promotes CRPC progression by suppressing IFN-ß axis-mediated antitumor immunity, underscoring GATA2 as a promising therapeutic target for CRPC.

5.
Food Chem (Oxf) ; 7: 100180, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37664158

RESUMEN

Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (TC line, TD line, TP line, or TB line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.

6.
Front Psychiatry ; 14: 1159175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139313

RESUMEN

Objectives: Childhood trauma (CT) is a known risk factor for major depressive disorder (MDD), but the mechanisms linking CT and MDD remain unknown. The purpose of this study was to examine the influence of CT and depression diagnosis on the subregions of the anterior cingulate cortex (ACC) in MDD patients. Methods: The functional connectivity (FC) of ACC subregions was evaluated in 60 first-episode, drug-naïve MDD patients (40 with moderate-to-severe and 20 with no or low CT), and 78 healthy controls (HC) (19 with moderate-to-severe and 59 with no or low CT). The correlations between the anomalous FC of ACC subregions and the severity of depressive symptoms and CT were investigated. Results: Individuals with moderate-to severe CT exhibited increased FC between the caudal ACC and the middle frontal gyrus (MFG) than individuals with no or low CT, regardless of MDD diagnosis. MDD patients showed lower FC between the dorsal ACC and the superior frontal gyrus (SFG) and MFG. They also showed lower FC between the subgenual/perigenual ACC and the middle temporal gyrus (MTG) and angular gyrus (ANG) than the HCs, regardless of CT severity. The FC between the left caudal ACC and the left MFG mediated the correlation between the Childhood Trauma Questionnaire (CTQ) total score and HAMD-cognitive factor score in MDD patients. Conclusion: Functional changes of caudal ACC mediated the correlation between CT and MDD. These findings contribute to our understanding of the neuroimaging mechanisms of CT in MDD.

7.
Cell Rep ; 42(3): 112278, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36933219

RESUMEN

As a key dsDNA recognition receptor, cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) plays a vital role in innate immune responses. Activated cGAS, by sensing DNA, catalyzes the synthesis of the secondary messenger cyclic GMP-AMP (cGAMP), which subsequently activates downstream signaling to induce production of interferons and inflammatory cytokines. Here, we report Zyg-11 family member B (ZYG11B) as a potent amplifier in cGAS-mediated immune responses. Knockdown of ZYG11B impairs production of cGAMP and subsequent transcription of interferon and inflammatory cytokines. Mechanistically, ZYG11B enhances cGAS-DNA binding affinity, potentiates cGAS-DNA condensation, and stabilizes the cGAS-DNA condensed complex. Moreover, herpes simplex virus 1 (HSV-1) infection induces ZYG11B degradation in a cGAS-unrelated manner. Our findings not only reveal an important role of ZYG11B in the early stage of DNA-induced cGAS activation but also indicate a viral strategy to dampen the innate immune response.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Antivirales , GMP Cíclico , Citocinas , ADN/metabolismo , Herpesvirus Humano 1/fisiología , Inmunidad Innata , Interferones , Nucleotidiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Cancer Cell ; 41(7): 1345-1362.e9, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37352863

RESUMEN

Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-ß signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Reprogramación Celular , Recurrencia Local de Neoplasia/tratamiento farmacológico , Castración , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Factores de Transcripción SOXC/genética
9.
Front Plant Sci ; 13: 1040282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340384

RESUMEN

Clonal reproduction is one of the most distinctive characteristics of plants and is common and diverse in aquatic macrophytes. The balance between sexual and asexual reproduction is affected by various conditions, especially adverse environments. However, we know little about clonal diversity of aquatic plants under suboptimal conditions, such as at high altitudes, and having this information would help us understand how environmental gradients influence patterns of clonal and genetic variation in freshwater species. The microsatellite data of four aquatic taxa in our previous studies were revisited to estimate clonal and genetic diversity on the Qinghai-Tibetan Plateau. Clonal diversity among different genetic groups was compared. Local environmental features were surveyed. Beta regressions were used to identify the environmental factors that significantly explained clonal diversity for relative taxon. The level of clonal diversity from high to low was Stuckenia filiformis > Hippuris vulgaris > Myriophyllum species > Ranunculus section Batrachium species. A positive correlation between clonal and genetic diversity was identified for all taxa, except H. vulgaris. Clonal diversity was affected by climate in S. filiformis and by the local environment in H. vulgaris. For Myriophyllum spp., low elevation and high sediment nutrition were significant for sexual recruitment. The environmental effects on clonal diversity were not significant in R. sect. Batrachium spp. Clonal diversity of aquatic plants is moderate to high and varies greatly in highlands. The effects of breeding systems and environmental factors on the patterns of clonal variation were identified. Elevational gradients, climates and local conditions play different roles in clonal diversity among relative taxon. Our results highlight the importance of sexual recruitment in alpine aquatic plant populations and the influence of environmental factors on the genetic patterns in freshwater species at local and regional scales.

10.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230972

RESUMEN

IFN-γ-stimulated MHC class I (MHC-I) antigen presentation underlies the core of antitumor immunity. However, sustained IFN-γ signaling also enhances the programmed death ligand 1 (PD-L1) checkpoint pathway to dampen antitumor immunity. It remains unclear how these opposing effects of IFN-γ are regulated. Here, we report that loss of the histone dimethyltransferase WHSC1 impaired the antitumor effect of IFN-γ signaling by transcriptional downregulation of the MHC-I machinery without affecting PD-L1 expression in colorectal cancer (CRC) cells. Whsc1 loss promoted tumorigenesis via a non-cell-autonomous mechanism in an Apcmin/+ mouse model, CRC organoids, and xenografts. Mechanistically, we found that the IFN-γ/STAT1 signaling axis stimulated WHSC1 expression and, in turn, that WHSC1 directly interacted with NLRC5 to promote MHC-I gene expression, but not that of PD-L1. Concordantly, silencing Whsc1 diminished MHC-I levels, impaired antitumor immunity, and blunted the effect of immune checkpoint blockade. Patient cohort analysis revealed that WHSC1 expression positively correlated with enhanced MHC-I expression, tumor-infiltrating T cells, and favorable disease outcomes. Together, our findings establish a tumor-suppressive function of WHSC1 that relays IFN-γ signaling to promote antigen presentation on CRC cells and provide a rationale for boosting WHSC1 activity in immunotherapy.


Asunto(s)
Antígeno B7-H1 , N-Metiltransferasa de Histona-Lisina , Neoplasias , Proteínas Represoras , Animales , Presentación de Antígeno , Antígeno B7-H1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas , Humanos , Interferón gamma , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones
11.
Nat Commun ; 13(1): 7281, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435834

RESUMEN

Chronic inflammation and an immunosuppressive microenvironment promote prostate cancer (PCa) progression and diminish the response to immune checkpoint blockade (ICB) therapies. However, it remains unclear how and to what extent these two events are coordinated. Here, we show that ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, functions downstream of inflammation-induced IKKß activation to shape the immunosuppressive tumor microenvironment (TME). Prostate-specific deletion of Arid1a cooperates with Pten loss to accelerate prostate tumorigenesis. We identify polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) as the major infiltrating immune cell type that causes immune evasion and reveal that neutralization of PMN-MDSCs restricts the progression of Arid1a-deficient tumors. Mechanistically, inflammatory cues activate IKKß to phosphorylate ARID1A, leading to its degradation via ß-TRCP. ARID1A downregulation in turn silences the enhancer of A20 deubiquitinase, a critical negative regulator of NF-κB signaling, and thereby unleashes CXCR2 ligand-mediated MDSC chemotaxis. Importantly, our results support the therapeutic strategy of anti-NF-κB antibody or targeting CXCR2 combined with ICB for advanced PCa. Together, our findings highlight that the IKKß/ARID1A/NF-κB feedback axis integrates inflammation and immunosuppression to promote PCa progression.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Quimiotaxis , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , FN-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Proteínas Serina-Treonina Quinasas , Inflamación/genética , Inflamación/metabolismo , Microambiente Tumoral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cancer Cell ; 38(3): 350-365.e7, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32619406

RESUMEN

The level of SETD2-mediated H3K36me3 is inversely correlated with that of EZH2-catalyzed H3K27me3. Nevertheless, it remains unclear whether these two enzymatic activities are molecularly intertwined. Here, we report that SETD2 delays prostate cancer (PCa) metastasis via its substrate EZH2. We show that SETD2 methylates EZH2 which promotes EZH2 degradation. SETD2 deficiency induces a Polycomb-repressive chromatin state that enables cells to acquire metastatic traits. Conversely, mice harboring nonmethylated EZH2 mutant or SETD2 mutant defective in binding to EZH2 develop metastatic PCa. Furthermore, we identify that metformin-stimulated AMPK signaling converges at FOXO3 to stimulate SETD2 expression. Together, our results demonstrate that the SETD2-EZH2 axis integrates metabolic and epigenetic signaling to restrict PCa metastasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias de la Próstata/genética , Transducción de Señal/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Trasplante Heterólogo
13.
Sci Rep ; 6: 22764, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26956895

RESUMEN

Gold (Au) nanoparticles are promising photothermal agents with the potential of clinical translation. However, the safety concerns of Au photothermal agents including the potential toxic compositions such as silver and copper elements in their structures and the relative large size-caused retention and accumulation in the body post-treatment are still questionable. In this article, we successfully synthesized dendrimer-stabilized Au nanorods (DSAuNRs) with pure Au composition and a sub-10-nm size in length, which represented much higher photothermal effect compared with dendrimer-encapsulated Au nanoparticles due to their significantly enhanced absorption in the near-infrared region. Furthermore, glycidol-modified DSAuNRs exhibited the excellent biocompatibility and further showed the high photothermal efficiency of killing cancer cells in vitro and retarding tumor growth in vivo. The investigation depicted an optimal photothermal agent with the desirable size and safe composition.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Dendrímeros/química , Nanotubos/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dendrímeros/administración & dosificación , Humanos , Hipertermia Inducida/métodos , Masculino , Ratones Endogámicos BALB C , Fototerapia/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA