Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(11): 8117-8127, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876923

RESUMEN

We report here a full-dimensional machine learning global potential surface (PES) for the rearrangement of methylhydroxycarbene (H3C-C-OH, 1t). The PES is trained with the fundamental invariant neural network (FI-NN) method on 91 564 ab initio energies calculated at the UCCSD(T)-F12a/cc-pVTZ level of theory, covering three possible product channels. FI-NN PES has the correct symmetry properties with respect to permutation of four identical hydrogen atoms and is suitable for dynamics studies of the 1t rearrangement. The averaged root mean square error (RMSE) is 11.4 meV. Six important reaction pathways, as well as the energies and vibrational frequencies at the stationary geometries on these pathways are accurately preproduced by our FI-NN PES. To demonstrate the capacity of the PES, we calculated the rate coefficient of hydrogen migration in -CH3 (path A) and hydrogen migration of -OH (path B) with instanton theory on this PES. Our calculations predicted the half-life of 1t to be 95 min, which is excellent in agreement with experimental observations.

2.
Phys Chem Chem Phys ; 19(43): 29146-29152, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29083429

RESUMEN

The ultrafast excited-state dynamics of 2,4-dimethylpyrrole following excitation at wavelengths in the range of 255.8-199.7 nm are studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (255.8, 250.0, 246.0 and 242.0 nm) results in population of the S1(1πσ*) state, which decays out of the photoionization window in less than 30 fs. At 237.7 nm, the second 1πσ* state is excited, which decays in about 130 fs. At shorter pump wavelengths (231.8, 224.8, 217.5 and 199.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited states to the 1π3p Rydberg states, which decay in about 60 fs, with internal conversion to the S1(1πσ*) state as one of the decay channels. The lifetimes of these 1π3p Rydberg states vary little with the pump wavelengths in this wavelength range.

3.
J Phys Chem Lett ; 14(18): 4179-4184, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37114860

RESUMEN

[Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) supported on TiO2 (P25) exhibited distinct photocatalytic behaviors in the oxidation of amines using visible or ultraviolet light. The activity under visible light (455 nm) was superior to that under ultraviolet light. To gain insight into the origin of this difference, we investigated the photoreaction pathways of Au25 isolated in the gas phase upon irradiation with a pulsed laser with wavelengths of 455, 193, and 154 nm. High-resolution mass spectrometry revealed photon energy-dependent pathways for Au25: dissociation of the PPh3 ligands and PPh3AuCl units at 455 nm, dissociation into small [AunSm]+ ions (n = 3-20; m = 0-4) at 193 nm, and ionization affording the triply charged state at 154 nm. These results were substantiated by density functional theory simulations. On the basis of these results, we proposed that the inferior photocatalytic activity of Au25/P25 under ultraviolet light is mainly due to the poor photostability of Au25.

4.
Commun Chem ; 5(1): 133, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36697660

RESUMEN

The mechanism of silver-catalyzed hydroamidation of siloxy-alkynes reaction remains controversial. Using density functional theory (DFT), we revealed that the reaction takes place through a silylium ion migration mediated hydroamination (SMH) pathway. The SMH pathway goes through two steps, the first step is Ag+ promoted proton and silylium ion exchange between siloxy-alkynes and amide, leading to ketene and silyl-imines, the second step is Ag+ catalyzed nucleophilic addition between ketene and silyl-imines, following with a silylium ion migration afford the final product. In this reaction, Ag+ activates the siloxy-alkyne into silylium ion (TIPS+) and silver-ketene through the p-π conjugate effect, the silylium ion then catalyzes the reaction. According to our calculation, the scopes of alkynes in this reaction may be extended to silyl-substituted ynamines or silyl-substituted ynamides. The scopes of amide may be extended into the p-π conjugate system such as diazoles, diazepines, etc. Our calculations also reveal a concise way to construct enamides through Ag+ catalyzed nucleophilic addition between substituted-ketenes and silyl-substituted p-π conjugate system.

5.
Anal Chim Acta ; 1206: 339612, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35473884

RESUMEN

Direct and rapid analysis of glyoxal by soft ionization mass spectrometry remains a great challenge due to its low ionization efficiency in existing soft ionization techniques, such as proton transfer reaction (PTR) and photoionization (PI). In this work, we developed a new VUV lamp-based cluster-mediated CH2Br2+ chemical ionization (CMCI) source for time-of-flight mass spectrometry (TOFMS), which was accomplished by employing photoionization-generated CH2Br2+ as the reactant ion and co-sampling of glyoxal with high-concentration ethanol (EtOH). The signal intensity of glyoxal could be enhanced by more than 2 orders of magnitude by generating protonated cluster ion [Glx·EtOH·H]+. Density function theory (DFT) calculations was performed to obtain the most stable structure of neutral glyoxal-ethanol cluster and confirm that the ionization energy (IE) of glyoxal-ethanol cluster was significantly lower than that of glyoxal and CH2Br2 molecules, which makes it possible for effective ionization of glyoxal. The ionization efficiency of glyoxal could be dramatically enhanced via ion-molecule reaction between CH2Br2+ and glyoxal-ethanol cluster, as larger ionization cross section of glyoxal-ethanol cluster than glyoxal molecule might be achieved. The cluster-mediated signal enhanced effect was also verified by using other alcohols, such as methanol and isopropanol. Consequently, the limit of quantitation (LOQ, S/N = 10) down to 0.17 ppbv for gas-phase glyoxal was achieved. The analytical capacity of this system was demonstrated by trace analysis of glyoxal in food contact papers, exhibiting new insights and wide potentials of chemical ionization and photoionization mass spectrometry for VOCs measurement with higher sensitivity and wider detectable sample range.


Asunto(s)
Glioxal , Protones , Fenómenos Químicos , Etanol , Espectrometría de Masas/métodos
6.
Commun Chem ; 3(1): 126, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36703398

RESUMEN

The mechanism of silver(I) and copper(I) catalyzed cycloaddition between 1,2-diazines and siloxy alkynes remains controversial. Here we explore the mechanism of this reaction with density functional theory. Our calculations show that the reaction takes place through a metal (Ag+, Cu+) catalyzed [2+2] cycloaddition pathway and the migration of a silylium ion [triisopropylsilyl ion (TIPS+)] further controls the reconstruction of four-member ring to give the final product. The lower barrier of this silylium ion mediated [2+2] cycloaddition mechanism (SMC) indicates that well-controlled [2+2] cycloaddition can obtain some poorly-accessible IEDDA (inverse-electron demand Diels-Alder reaction) products. Strong interaction of d10 metals (Ag+, Cu+) and alkenes activates the high acidity silylium ion (TIPS+) in situ. This п-acid (Ag+, Cu+) and hard acid (TIPS+) exchange scheme will be instructive in silylium ion chemistry. Our calculations not only provide a scheme to design IEDDA catalysts but also imply a concise way to synthesise 1,2-dinitrogen substituted cyclooctatetraenes (1,2-NCOTs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA