Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.721
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815582

RESUMEN

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Asunto(s)
Movimiento Celular , Fibrosis , Riñón , Linfocitos , Receptor de Muerte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transducción de Señal , Animales , Fibrosis/inmunología , Ratones , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Movimiento Celular/inmunología , Humanos , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/inmunología , Ratones Endogámicos C57BL , Enfermedades Renales/inmunología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Inmunidad Innata/inmunología , Ratones Noqueados , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/inmunología , Intestinos/patología
2.
Cell ; 167(6): 1555-1570.e15, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889238

RESUMEN

Nucleosome organization influences gene activity by controlling DNA accessibility to transcription machinery. Here, we develop a chemical biology approach to determine mammalian nucleosome positions genome-wide. We uncovered surprising features of nucleosome organization in mouse embryonic stem cells. In contrast to the prevailing model, we observe that for nearly all mouse genes, a class of fragile nucleosomes occupies previously designated nucleosome-depleted regions around transcription start sites and transcription termination sites. We show that nucleosomes occupy DNA targets for a subset of DNA-binding proteins, including CCCTC-binding factor (CTCF) and pluripotency factors. Furthermore, we provide evidence that promoter-proximal nucleosomes, with the +1 nucleosome in particular, contribute to the pausing of RNA polymerase II. Lastly, we find a characteristic preference for nucleosomes at exon-intron junctions. Taken together, we establish an accurate method for defining the nucleosome landscape and provide a valuable resource for studying nucleosome-mediated gene regulation in mammalian cells.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/genética , Animales , Factor de Unión a CCCTC , Estudio de Asociación del Genoma Completo , Ratones , ARN Polimerasa II/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
3.
Nature ; 614(7948): 445-450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792741

RESUMEN

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5-8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man's Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.

4.
Nature ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019149

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

5.
Nucleic Acids Res ; 52(D1): D1193-D1200, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897359

RESUMEN

circRNADisease v2.0 is an enhanced and reliable database that offers experimentally verified relationships between circular RNAs (circRNAs) and various diseases. It is accessible at http://cgga.org.cn/circRNADisease/ or http://cgga.org.cn:9091/circRNADisease/. The database currently includes 6998 circRNA-disease entries across multiple species, representing a remarkable 19.77-fold increase compared to the previous version. This expansion consists of a substantial rise in the number of circRNAs (from 330 to 4246), types of diseases (from 48 to 330) and covered species (from human only to 12 species). Furthermore, a new section has been introduced in the database, which collects information on circRNA-associated factors (genes, proteins and microRNAs), molecular mechanisms (molecular pathways), biological functions (proliferation, migration, invasion, etc.), tumor and/or cell line and/or patient-derived xenograft (PDX) details, and prognostic evidence in diseases. In addition, we identified 7 159 865 relationships between mutations and circRNAs among 30 TCGA cancer types. Due to notable enhancements and extensive data expansions, the circRNADisease 2.0 database has become an invaluable asset for both clinical practice and fundamental research. It enables researchers to develop a more comprehensive understanding of how circRNAs impact complex diseases.


Asunto(s)
Bases de Datos Genéticas , Neoplasias , ARN Circular , Humanos , Línea Celular , Neoplasias/genética
6.
Proc Natl Acad Sci U S A ; 120(10): e2120536120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848565

RESUMEN

During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs). Increasing the number of parallel fibers increases FACs and retraction fiber-driven stability, leading to reduced 3D cell body movement, metaphase plate rotations, increased interkinetochore distances, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by RFs from two perpendicular suspended fibers. We develop a cortex-astral microtubule analytical model to capture the retraction fiber dependence of the metaphase plate rotations. We observe that reduced orientational stability, on single fibers, results in increased monopolar mitotic defects, while multipolar defects become dominant as the number of adhered fibers increases. We use a stochastic Monte Carlo simulation of centrosome, chromosome, and membrane interactions to explain the relationship between the observed propensity of monopolar and multipolar defects and the geometry of RFs. Overall, we establish that while bipolar mitosis is robust in fibrous environments, the nature of division errors in fibrous microenvironments is governed by interphase cell shapes and adhesion geometries.


Asunto(s)
División del Núcleo Celular , Mitosis , Centrosoma , Aeronaves , Axones
7.
Hepatology ; 79(3): 650-665, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459556

RESUMEN

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS: We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-ß cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-ß of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-ß. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS: Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.


Asunto(s)
Aflatoxinas , Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Factor de Crecimiento Transformador beta , Neoplasias Hepáticas/metabolismo , Factores de Transcripción/genética , Fenotipo , Microambiente Tumoral
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217614

RESUMEN

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Asunto(s)
Codón Iniciador , Evolución Molecular , Genes Homeobox , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Ratones , Sistemas de Lectura Abierta
9.
Proc Natl Acad Sci U S A ; 119(36): e2205629119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037365

RESUMEN

Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.


Asunto(s)
Apoptosis , Tolerancia Inmunológica , Proteínas de la Membrana , Células Precursoras de Linfocitos B , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O1/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Fosfohidrolasa PTEN/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874010

RESUMEN

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

11.
J Cell Mol Med ; 28(7): e18165, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494845

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a commonly occurring and highly aggressive urological malignancy characterized by a significant mortality rate. Current therapeutic options for advanced ccRCC are limited, necessitating the discovery of novel biomarkers and therapeutic targets. Carboxypeptidase A4 (CPA4) is a zinc-containing metallocarboxypeptidase with implications in various cancer types, but its role in ccRCC remains unexplored. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized in order to investigate the differential expression patterns of CPA4. The expression of CPA4 in ccRCC patients was further verified using immunohistochemical (IHC) examination of 24 clinical specimens. A network of protein-protein interactions (PPI) was established, incorporating CPA4 and its genes that were expressed differentially. Functional enrichment analyses were conducted to anticipate the contribution of CPA4 in the development of ccRCC. To validate our earlier study, we conducted real-time PCR and cell functional tests on ccRCC cell lines. Our findings revealed that CPA4 is overexpressed in ccRCC, and the higher the expression of CPA4, the worse the clinical outcomes such as TNM stage, pathological stage, histological grade, etc. Moreover, patients with high CPA4 expression had worse overall survival, disease-specific survival and progress-free interval than patients with low expression. The PPI network analysis highlighted potential interactions contributing to ccRCC progression. Functional enrichment analysis indicated the involvement of CPA4 in the regulation of key pathways associated with ccRCC development. Additionally, immune infiltration analysis suggested a potential link between CPA4 expression and immune response in the tumour microenvironment. Finally, cell functional studies in ccRCC cell lines shed light on the molecular mechanisms underlying the role of CPA4 in promoting ccRCC formation. Overall, our study unveils CPA4 as a promising biomarker with prognostic potential in ccRCC. The identified interactions and pathways provide valuable insights into its implications in ccRCC development and offer a foundation for future research on targeted therapies. Further investigation of CPA4's involvement in immune responses may contribute to the development of immunotherapeutic strategies for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Biomarcadores , Neoplasias Renales/genética , Proliferación Celular/genética , Microambiente Tumoral/genética
12.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652116

RESUMEN

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Asunto(s)
Salmonella enterica , Serogrupo , Espectrometría Raman , Máquina de Vectores de Soporte , Espectrometría Raman/métodos , Salmonella enterica/aislamiento & purificación , Humanos , Algoritmos
13.
BMC Genomics ; 25(1): 369, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622517

RESUMEN

BACKGROUND: Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS: PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS: In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.


Asunto(s)
Enfermedades de las Aves , Infecciones por Circoviridae , Circovirus , Animales , Columbidae , Filogenia , Granjas , Circovirus/genética , Infecciones por Circoviridae/veterinaria , Nucleótidos
14.
Lab Invest ; 104(3): 100326, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237739

RESUMEN

To better understand the pathogenesis of acute type A aortic dissection, high-sensitivity liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS)-based proteomics and phosphoproteomics approaches were used to identify differential proteins. Heat shock protein family B (small) member 6 (HSPB6) in aortic dissection was significantly reduced in human and mouse aortic dissection samples by real-time PCR, western blotting, and immunohistochemical staining techniques. Using an HSPB6-knockout mouse, we investigated the potential role of HSPB6 in ß-aminopropionitrile monofumarate-induced aortic dissection. We found increased mortality and increased probability of ascending aortic dissection after HSPB6 knockout compared with wild-type mice. Mechanistically, our data suggest that HSPB6 deletion promoted vascular smooth muscle cell apoptosis. More importantly, HSPB6 deletion attenuated cofilin activity, leading to excessive smooth muscle cell stiffness and eventually resulting in the development of aortic dissection and rupture. Our data suggest that excessive stiffness of vascular smooth muscle cells caused by HSPB6 deficiency is a new pathogenetic mechanism leading to aortic dissection.


Asunto(s)
Disección Aórtica , Espectrometría de Masas en Tándem , Ratones , Humanos , Animales , Cromatografía Liquida , Disección Aórtica/genética , Miocitos del Músculo Liso/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Proteínas del Choque Térmico HSP20/metabolismo
15.
EMBO J ; 39(15): e102931, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32511795

RESUMEN

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.


Asunto(s)
Reparación del ADN , Desoxirribonucleótidos/metabolismo , Cambio de Clase de Inmunoglobulina , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Línea Celular , Desoxirribonucleótidos/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética
16.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G543-G554, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252683

RESUMEN

The pathogenesis of irritable bowel syndrome (IBS) is multifactorial, characterized in part by increased intestinal permeability, and visceral hypersensitivity. Increased permeability is associated with IBS severity and abdominal pain. Tenapanor is FDA-approved for the treatment of IBS with constipation (IBS-C) and has demonstrated improvements in bowel motility and a reduction in IBS-related pain; however, the mechanism by which tenapanor mediates these functions remains unclear. Here, the effects of tenapanor on colonic pain signaling and intestinal permeability were assessed through behavioral, electrophysiological, and cell culture experiments. Intestinal motility studies in rats and humans demonstrated that tenapanor increased luminal sodium and water retention and gastrointestinal transit versus placebo. A significantly reduced visceral motor reflex (VMR) to colonic distension was observed with tenapanor treatment versus vehicle in two rat models of visceral hypersensitivity (neonatal acetic acid sensitization and partial restraint stress; both P < 0.05), returning VMR responses to that of nonsensitized controls. Whole cell voltage patch-clamp recordings of retrogradely labeled colonic dorsal root ganglia (DRG) neurons from sensitized rats found that tenapanor significantly reduced DRG neuron hyperexcitability to capsaicin versus vehicle (P < 0.05), an effect not mediated by epithelial cell secretions. Tenapanor also attenuated increases in intestinal permeability in human colon monolayer cultures caused by incubation with proinflammatory cytokines (P < 0.001) or fecal supernatants from patients with IBS-C (P < 0.005). These results support a model in which tenapanor reduces IBS-related pain by strengthening the intestinal barrier, thereby decreasing permeability to macromolecules and antigens and reducing DRG-mediated pain signaling.NEW & NOTEWORTHY A series of nonclinical experiments support the theory that tenapanor inhibits IBS-C-related pain by strengthening the intestinal barrier. Tenapanor treatment reduced visceral motor responses to nonsensitized levels in two rat models of hypersensitivity and reduced responses to capsaicin in sensitized colonic nociceptive dorsal root ganglia neurons. Intestinal permeability experiments in human colon monolayer cultures found that tenapanor attenuates increases in permeability induced by either inflammatory cytokines or fecal supernatants from patients with IBS-C.


Asunto(s)
Síndrome del Colon Irritable , Isoquinolinas , Sulfonamidas , Humanos , Ratas , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Colon/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Funcion de la Barrera Intestinal , Capsaicina/farmacología , Células Receptoras Sensoriales/metabolismo , Dolor Abdominal/metabolismo , Citocinas/metabolismo , Canales Catiónicos TRPV/metabolismo
17.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775840

RESUMEN

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Asunto(s)
Homocigoto , Infecciones Oportunistas , Humanos , Masculino , Adulto Joven , Células Jurkat , Activación de Linfocitos/genética , Infecciones Oportunistas/genética , Infecciones Oportunistas/inmunología , Linaje , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Recurrencia , Linfocitos T/inmunología , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo
18.
Anal Chem ; 96(14): 5719-5726, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38544485

RESUMEN

Neuropathic pain is a chronic and severe syndrome for which effective therapy is insufficient and the release of ATP from microglia induced by sphingosine-1-phosphate (S1P) plays a vital role in neuropathic pain. Therefore, there is an urgent demand to develop highly sensitive and selective ATP biosensors for quantitative monitoring of low-concentration ATP in the complex nervous system, which helps in understanding the mechanism involved in neuropathic pain. Herein, we developed an electrochemical microsensor based on an entropy-driven bipedal DNA walker. First, the microsensor specifically recognized ATP via ATP aptamers, initiating the entropy-driven bipedal DNA walker. Subsequently, the bipedal DNA walker autonomously traversed the microelectrode interface, introducing methylene blue to the electrode surface and achieving cascade signal amplification. This microsensor showed excellent selectivity, stability, and a low limit of detection at 1.13 nM. The S1P-induced ATP release from BV2 cells was successfully monitored, and it was observed that dicumarol could inhibit this release, suggesting dicumarol as a potential treatment for neuropathic pain. The microsensor's small size exhibited significant potential for monitoring ATP level changes in neuropathic pain in vivo, which provides a new strategy for in situ and quantitative monitoring of nonelectroactive biomolecules associated with neurological diseases.


Asunto(s)
Técnicas Biosensibles , Lisofosfolípidos , Neuralgia , Esfingosina/análogos & derivados , Humanos , Entropía , Dicumarol , ADN/química , Microelectrodos , Adenosina Trifosfato , Técnicas Electroquímicas , Límite de Detección
19.
Biochem Biophys Res Commun ; 711: 149894, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38603834

RESUMEN

BACKGROUND: Low-grade glioma (LGG) has an extremely poor prognosis, and the mechanism leading to malignant development has not been determined. The aim of our study was to clarify the function and mechanism of anoikis and TIMP1 in the malignant progression of LGG. METHODS: We screened 7 anoikis-related genes from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a prognostic-predicting model. The study assessed the clinical prognosis, pathological characteristics, and immune cell infiltration in both high- and low-risk groups. Additionally, the potential modulatory effects of TIMP1 on proliferation, migration, and anoikis in LGG were investigated both in vivo and in vitro. RESULTS: In this study, we identified seven critical genes, namely, PTGS2, CCND1, TIMP1, PDK4, LGALS3, CDKN1A, and CDKN2A. Kaplan‒Meier (K‒M) curves demonstrated a significant correlation between clinical features and overall survival (OS), and single-cell analysis and mutation examination emphasized the heterogeneity and pivotal role of hub gene expression imbalances in LGG development. Immune cell infiltration and microenvironment analysis further elucidated the relationships between key genes and immune cells. In addition, TIMP1 promoted the malignant progression of LGG in both in vitro and in vivo models. CONCLUSIONS: This study confirmed that TIMP1 promoted the malignant progression of LGG by inhibiting anoikis, providing insights into LGG pathogenesis and potential therapeutic targets.


Asunto(s)
Anoicis , Glioma , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Anoicis/genética , Glioma/genética , Glioma/inmunología , Glioma/patología , Pronóstico , Inhibidor Tisular de Metaloproteinasa-1/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Masculino , Proliferación Celular/genética , Femenino , Ratones Desnudos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Clasificación del Tumor
20.
BMC Med ; 22(1): 28, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263021

RESUMEN

BACKGROUND: Current hypertension guidelines recommend combination of an angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker with a calcium-channel blocker or thiazide diuretic as initial antihypertensive therapy in patients with monotherapy uncontrolled hypertension. However, to what extent these two different combinations are comparable in blood pressure (BP)-lowering efficacy and safety remains under investigation, especially in the Chinese population. We investigated the BP-lowering efficacy and safety of the amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies in Chinese patients. METHODS: In a multi-center, randomized, actively controlled, parallel-group trial, we enrolled patients with stage 1 or 2 hypertension from July 2018 to June 2021 in 20 hospitals and community health centers across China. Of the 894 screened patients, 560 eligible patients were randomly assigned to amlodipine/benazepril 5/10 mg (n = 282) or benazepril/hydrochlorothiazide 10/12.5 mg (n = 278), with 213 and 212 patients, respectively, who completed the study and had a valid repeat ambulatory BP recording during follow-up and were included in the efficacy analysis. The primary outcome was the change from baseline to 24 weeks of treatment in 24-h ambulatory systolic BP. Adverse events including symptoms and clinically significant changes in physical examinations and laboratory findings were recorded for safety analysis. RESULTS: In the efficacy analysis (n = 425), the primary outcome, 24-h ambulatory systolic BP reduction, was - 13.8 ± 1.2 mmHg in the amlodipine/benazepril group and - 12.3 ± 1.2 mmHg in the benazepril/hydrochlorothiazide group, with a between-group difference of - 1.51 (p = 0.36) mmHg. The between-group differences for major secondary outcomes were - 1.47 (p = 0.18) in 24-h diastolic BP, - 2.86 (p = 0.13) and - 2.74 (p = 0.03) in daytime systolic and diastolic BP, and - 0.45 (p = 0.82) and - 0.93 (p = 0.44) in nighttime systolic and diastolic BP. In the safety analysis (n = 560), the incidence rate of dry cough was significantly lower in the amlodipine/benazepril group than in the benazepril/hydrochlorothiazide group (5.3% vs 10.1%, p = 0.04). CONCLUSIONS: The amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies were comparable in ambulatory systolic BP lowering. The former combination, compared with the latter, had a greater BP-lowering effect in the daytime and a lower incidence rate of dry cough. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03682692. Registered on 18 September 2018.


Asunto(s)
Hipertensión , Hipotensión , Humanos , Antihipertensivos , Amlodipino , Hidroclorotiazida , China , Tos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA