Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nanotechnology ; 34(24)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36927654

RESUMEN

Znic-based metal-organic framework materials (ZIF-8) show great potential and excellent performance in the fields of sensing and catalysis. However, powdered metal-organic framework makes it easy to lose in the process of application. Herein, we use a simple blending electrostatic spinning method to combine ZIF-8 particles with polyacrylonitrile (PAN) nanofibers. ZIF-8/PAN composite nanofiber membrane. The ZIF-8/PAN nanofiber membrane is characterized by scanning electron microscope (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and N2adsorption-desorption. The results show that the ZIF-8/PAN nanofiber membrane has the characteristic peaks of XRD and FTIR, which are consistent with those of simulated ZIF-8. The specific surface area of ZIF-8/PAN nanofiber membrane increases from 13.5371 to 711.4171 m2g-1due to the introduction of ZIF-8 particles. The sensor using the nanofiber membrane as the gas sensing layer shows good response and linear correlation to different concentrations of acetone gas. The minimum detection limit of the sensor for acetone is 51.9 ppm. The blank control shows that the response of the sensor to acetone is mainly due to the introduction of ZIF-8 particles. In addition, the sensor also shows a good cyclic response to acetone.

2.
Phys Chem Chem Phys ; 15(45): 19845-52, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24145851

RESUMEN

Tuning and controlling the solid-state luminescence of molecular solids play a key role in developing multi-color displays and tunable dye laser. In this work, we report the tunable blue and red luminescence by the formation of solvate crystals of 1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP) and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). Upon introduction of guest solvents (chloroform and dichloromethane) into the POPOP and DCM host matrices, the obtained solvate crystals exhibit an alternated stacking arrangement, interaction fashion, and crystal symmetry compared with the pristine chromophore solids. Furthermore, the solvates of POPOP (CCl3H) and DCM (CCl2H2) present changeable luminescent properties (such as one-/two-photon emissive wavelength, fluorescence lifetime and photoluminescent quantum yield) in the blue/red regions relative to the pristine POPOP and DCM. In addition, the second harmonic generation can also be obtained for the DCM (CCl2H2) due to the transformation of the centrosymmetric to a non-centrosymmetric structure from pristine DCM. Periodic density functional theoretical calculations suggest that the guest solvents do not participate in the frontier orbital distribution within the solvate crystals. Therefore, by the combination of experimental and theoretical studies on the solvate crystals, this work not only reports the supramolecular assembly of new types of host-guest photoactive systems, but also provides a detailed understanding of the electronic structures of the solid-state luminescent materials.

3.
J Colloid Interface Sci ; 648: 654-663, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321084

RESUMEN

Microbial fuel cells (MFCs) have great potential as a new energy technology that utilizes microorganisms to produce electrical energy by decomposing organic matter. A cathode catalyst is key to achieving an accelerated cathodic oxygen reduction reaction (ORR) in MFCs. We prepared a Zr-based metal organic-framework-derived silver-iron co-doped bimetallic material based on electrospun nanofibers by promoting the in situ growth of UiO-66-NH2 on polyacrylonitrile (PAN) nanofibers and named it as CNFs-Ag/Fe-m:n doped catalyst (m:n were 0, 1:1, 1:2, 1:3, and 2:1, respectively). Experimental results combined with density functional theory (DFT) calculations reveal that a moderate amount of Fe doped in CNFs-Ag-1:1 reduces the Gibbs free energy in the last step of the ORR. This indicates that Fe doping improves the performance of the catalytic ORR, and MFCs equipped with CNFs-Ag/Fe-1:1 exhibit a maximum power density of 737. 45 mW m-2, significantly higher than that obtained for MFCs using commercial Pt/C (457.99 mW m-2).

4.
J Nanosci Nanotechnol ; 12(3): 2522-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755084

RESUMEN

A novel magnetic separable composite photocatalytic nanofiber consisting of TiO2 as the major phase, CeO(2-y) and CoFe2O4 as the dopant phase was prepared by sol-gel method and electrospinning technique, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrum (UV-vis DRS) and vibrating sample magnetometer (VSM). The photocatalytic activity of the resultant CoFe2O4-TiO2 and CeO(2-y)/CoFe2O4-TiO2 nanofibers was evaluated by photodegradation of methylene blue (MB) in an aqueous solution under xenon lamp (the irradiation spectrum energy distribution is similar to sunlight) irradiation in a photochemical reactor. The results showed that the dopant of Ce could affect the absorbance ability and photo-response range. The sample containing 1.0 wt% CeO(2-y) exhibited the highest degradation with 35% for MB under simulate solar light irradiation. Furthermore, the as-synthesized composite photocatalytic nanofibers could be separated easily by an external magnetic field, thus it might hold potential for application in wastewater treatment.

5.
J Nanosci Nanotechnol ; 12(3): 2496-502, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755080

RESUMEN

A reusable photocatalytic TiO2/CoFe2O4 composite nanofiber was directly formed by using a vertical two-spinneret electrospinning process and sol-gel method, followed by heat treatment at 550 degrees C for 2 h. The high photocatalytic activity of the composite nanofibers depends on the good morphology of the fibers and the appropriate calcination temperature. The crystal structure and magnetic properties of the fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The photocatalytic activity of the TiO2/CoFe2O4 fibers was investigated through ultraviolet-visible absorbance following the photo-oxidative decomposition of phenol. Meanwhile, the presence of CoFe2O4 not only broadens the response region of visible light, but also enhances the absorbance of UV light. Furthermore, these fibers displayed photocatalytic activity associated with magnetic activity of CoFe2O4 ferrites, allowing easy separated of the photocatalysts after the photo-oxidative process and effectively avoided the secondary pollution of the treated water.

6.
Environ Technol ; 43(21): 3239-3247, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33881964

RESUMEN

The removal of heavy metal ions in wastewater has a great significance to human health and environment protection. Metal organic framework possesses high surface area, rich porosity, tunable pore size and abundant active sites. However, the intrinsic aggregation and fragility of MOF nanoparticles make its poor adsorption and undesirable reusage. Herein, a facile and unique hot-pressing method is adopted to decorate the MOF nanoparticles on nickel foam (ZIF-8/NF), which simultaneously serves as self-supporting substrate of ZIF-8 nanoparticles and electrode of a self-powered multifunctional purification system. In adsorption, the ZIF-8/NF composite presents high Cu2+ removal rate of 49.5% with the concentration of 10 mg/100 ml. More importantly, integrating with electrochemistry, the Cu2+ removal rate of the ZIF-8/NF composite reaches 54.7% in 5 min. The superior performance is attributed to the comprehensive effects of ion exchange, chemical bonding and physical adsorption. Moreover, the low-cost, fast and scalable preparation contributes to commercially fabricate MOF nanoparticles on self-supported substrate to treat wastewater with high efficiency and good recyclability.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Electroquímica , Humanos , Estructuras Metalorgánicas/química , Níquel , Aguas Residuales/química , Contaminantes Químicos del Agua/química
7.
J Nanosci Nanotechnol ; 11(5): 3894-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21780383

RESUMEN

Magnetoplumbite-type (M-type) SrRE(x)Fe(12-x)O19 (RE = La and Ce, x = 0-1.0) powders were prepared by a citric acid sol-gel technique and subsequent heat treatment. The crystal structure, grain size and magnetic properties were investigated by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and vibrating sample magnetometer (VSM). The XRD patterns show that SrRE(x)Fe(12-x)O19 (RE = La and Ce) are mainly hexagonal magnetic plumbite structure, and the average grain size of 30-40 nm was calculated using the Scherer's equation based on the XRD spectrum. Substitution of Fe ion by the rare earth La ion causes a significant decrease in intrinsic coercivity (Hc) and a slight decrease in saturation magnetization (Ms) as shown in the magnetization hysteresis loops. However, the Hc rises gradually in a small wave pattern with the increase of doping content of the rare earth Ce. The relation between the crystal structure and magnetic properties was also studied in this work.

8.
Glob Chall ; 3(12): 1900070, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31832238

RESUMEN

Wearable and shape-adaptive electronic textiles (E-textiles) for human activities detection such as diversity joints motion are highly desired. However, conventional E-textiles still remain great challenges, such as flexibility, air permeability, and large-area fabrication. Here, a fabric E-textile is developed as a self-powered textile for tracking active motion signals. The fiber-shaped coaxial tribo-sensor is fabricated with silver yarn (Ag) and polytetrafluoroethylene yarn, which allows for integrating well with cloths at large scales due to its satisfactory breathability, good washability, and desirable flexibility. Based on the coaxial-structured design, the fabricated E-textile is optimized to generate the output performance with maximum short-current (I sc) of 90 nA and open-voltage (V oc) of 8 V. Moreover, the E-textile can also be utilized as a self-powered activity tribo-sensor to monitor the motion signals of the human body. More significantly, the obtained E-textile performs outstanding finger-touching sensitivity, which can be applied in a wireless controller, active sensor, and human-machine interactions. This work presents a new way for a multifunctional E-textile with potential applications in smart home systems, wearable electronics, and personalized healthcare.

9.
J Hazard Mater ; 347: 25-30, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288916

RESUMEN

In recent years, people pay more attention to the protection against chemical warfare agents, due to the increase in the probability of usage of these chemical warfare agents in wars or terrorist attacks. In this work, MgO nanoparticles were in-situ growth on the surface of poly(m-phenylene Isophthalamide) (PMIA) forming a flexible and breathable fabric for the detoxification of mustard gas surrogate. The as-prepared nanofibrous membrane possesses a "flower-like" structure of which endows not only increase the specific surface area of the composite but also prevent the agglomeration of the MgO nanoparticles. The detoxification ability of the PMIA@MgO nanofibrous fabric was demonstrated by gas chromatography-mass spectrometer (GC-MS). It is found that after 20 h of reaction time, 70.56% of the mustard gas surrogate have been decomposed.

10.
ACS Appl Mater Interfaces ; 10(30): 25683-25688, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975509

RESUMEN

Core-shell-structured BaTiO3-poly( tert-butyl acrylate) (P tBA) nanoparticles are successfully prepared by in situ atom transfer radical polymerization of tert-butyl acrylate ( tBA) on BaTiO3 nanoparticle surface. The thickness of the P tBA shell layer could be controlled by adjusting the feed ratio of tBA to BaTiO3. The BaTiO3-P tBA nanoparticles are introduced into poly(vinylidene fluoride) (PVDF) matrix to form a BaTiO3-P tBA/PVDF nanocomposite. The nanocomposites keep the flexibility of the PVDF matrix with enhanced dielectric constant (∼15@100 Hz) because of the high permittivity of inorganic particles and the ester functional groups in the P tBA. Furthermore, the BaTiO3-P tBA/PVDF nanocomposites demonstrate the inherent small dielectric loss of the PVDF matrix in the tested frequency range. The high electric field dielectric constant of the nanocomposite film was investigated by polarization hysteresis loops. The high electric field effective dielectric constant of the nanocomposite is 26.5 at 150 MV/m. The output current density of the nanocomposite-based triboelectric nanogenerator (TENG) is 2.1 µA/cm2, which is above 2.5 times higher than the corresponding pure PVDF-based TENG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA