Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957105

RESUMEN

Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry-Pérot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation. Here, we address the knowledge gap by studying electromotively driven niobium diselenide drumheads fabricated on highly reflective substrates. We use a FP-mediated absorptive heating model to explain the measured variations of the photothermal response. The model predicts a higher magnitude and tuning range of photothermal responses on few-layer and monolayer NbSe2 drumheads, which outperform other clamped vdW drum-type NMRs at a laser wavelength of 532 nm. Further analysis of the model shows that both the magnitude and tuning range of NbSe2 drumheads scale with thickness, establishing a displacement-based framework for building bolometers using FP-mediated vdW NMRs.

2.
Nanoscale Adv ; 4(2): 502-509, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132699

RESUMEN

One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection. Here, we address this limitation by implementing a modeling-based approach via multilayer thin-film interference for in situ, non-invasive determination of the resonator thickness, gap height, and motional amplitude. This method is demonstrated on niobium diselenide drumheads that are electromotively driven in their linear regime of motion. The laser scanning confocal configuration enables a resolution of hundreds of picometers in motional amplitude for circular and elliptical devices. The measured thickness and spacer height, determined to be in the order of tens and hundreds of nanometers, respectively, are in excellent agreement with profilometric measurements. Moreover, the transduction factor estimated from our method agrees with the result of other studies that resolved Brownian motion. This characterization method, which applies to both flexural and acoustic wave nanomechanical resonators, is robust because of its scalability to thickness and gap height, and any form of reflecting substrate.

3.
Opt Express ; 19 Suppl 4: A914-29, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21747562

RESUMEN

The experimental demonstrations of light-emitting diode (LED) fabrication with surface plasmon (SP) coupling with the radiating dipoles in its quantum wells are first reviewed. The SP coupling with a radiating dipole can create an alternative emission channel through SP radiation for enhancing the effective internal quantum efficiency when the intrinsic non-radiative recombination rate is high, reducing the external quantum efficiency droop effect at high current injection levels, and producing partially polarized LED output by inducing polarization-sensitive SP for coupling. Then, we report the theoretical and numerical study results of SP-dipole coupling based on a simple coupling model between a radiating dipole and the SP induced on a nearby Ag nanoparticle (NP). To include the dipole strength variation effect caused by the field distribution built in the coupling system (the feedback effect), the radiating dipole is represented by a saturable two-level system. The spectral and dipole-NP distance dependencies of dipole strength variation and total radiated power enhancement of the coupling system are demonstrated and interpreted. The results show that the dipole-SP coupling can enhance the total radiated power. The enhancement is particularly effective when the feedback effect is included and hence the dipole strength is increased.

4.
Nanotechnology ; 22(2): 025201, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21135479

RESUMEN

The implementation of a series of optically pumped GaN photonic crystal (PhC) membrane lasers is demonstrated at room temperature. The photonic crystal is composed of a scalene-triangular arrangement of circular holes in GaN. Three defect structures are fabricated for comparing their lasing characteristics with those of perfect PhC. It is observed that all the lasing defect modes have lasing wavelengths very close to the band-edge modes in the perfect PhC structure. Although those lasing modes, including band-edge and defect modes, have different optical pump thresholds, different lasing spectral widths, different quality factors (Q factors), and different polarization ratios, all their polarization distributions show maxima in the directions around one of the hole arrangement axes. The similar lasing characteristics between the band-edge and defect modes are attributed to the existence of extremely narrow partial band gaps for forming the defect modes. Also, the oriented polarization properties are due to the scalene-triangle PhC structure. In one of the defect lasing modes, the lasing threshold is as low as 0.82 mJ cm(-2), the cavity Q factor is as large as 1743, and the polarization ratio is as large as 25.4. Such output parameters represent generally superior lasing behaviors when compared with previously reported implementations of similar laser structures.

5.
Adv Sci (Weinh) ; 8(13): 2005041, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34258159

RESUMEN

Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion can be obtained by also looking at modal responses at frequencies in between resonances. Here, an imaging of the modal responses for a nanomechanical drum driven off resonance is presented. By using the frequency modal analysis, these shapes are described as a superposition of resonance modes. It is found that the spatial distribution of the oscillating component of the driving force, which is affected by both the shape of the actuating electrode and inherent device properties such as asymmetry and initial slack, greatly influences the modal weight or participation. This modal superposition analysis elucidates the dynamics of any nanomechanical system through modal weights. This aids in optimizing mode-specific designs for force sensing and integration with other systems.

6.
Opt Express ; 18(3): 2682-94, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20174098

RESUMEN

The use of localized surface plasmon (LSP) interaction for significantly enhancing InGaN absorption near its band edge and the overall efficiency of an InGaN-based solar cell by embedding Ag nanoparticles (NPs) in the InGaN absorbing layer is numerically demonstrated. The generation of LSP resonance on the embedded Ag NPs and the NP scattering can produce a field distribution in the InGaN layer for enhancing absorption. It is shown that the embedded Ag NPs do not significantly affect the transport of the photo-generated carriers. The distortion of static electrical stream lines in the solar cell due to the embedded Ag NP leads to a decrease of photocurrent by only a few percents. Based on the material parameter values we use, unless the surface recombination velocity at the interface between the Ag NP and surrounding InGaN is extremely high, Ag NP embedment in the absorbing layer of an InGaN-based solar cell can enhance its efficiency by up to 27%. Such an increase is significantly larger than that achieved by depositing metal NP on the top surface of a solar cell.

7.
Opt Express ; 18 Suppl 2: A207-20, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20588590

RESUMEN

The simulation results of absorption enhancement in an amorphous-Si (a-Si) solar cell by depositing metal nanoparticles (NPs) on the device top and embedding metal NPs in a layer above the Al back-reflector are demonstrated. The absorption increase results from the near-field constructive interference of electromagnetic waves in the forward direction such that an increased amount of sunlight energy is distributed in the a-Si absorption layer. Among the three used metals of Al, Ag, and Au, Al NPs show the most efficient absorption enhancement. Between the two used NP geometries, Al nanocylinder (NC) are more effective in absorption enhancement than Al nanosphere (NS). Also, a random distribution of isolated metal NCs can lead to higher absorption enhancement, when compared with the cases of periodical metal NC distributions. Meanwhile, the fabrication of both top and bottom Al NCs in a solar cell results in further absorption enhancement. Misalignments between the top and bottom Al NCs do not significantly reduce the enhancement percentage. With a structure of vertically aligned top and bottom Al NCs, solar cell absorption can be increased by 52%.

8.
Nanotechnology ; 21(29): 295102, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20601768

RESUMEN

Preparation of a high-concentration Au nanoring (NR) water solution and its applications to the enhancement of image contrast in optical coherence tomography (OCT) and the generation of the photothermal effect in a bio-sample through localized surface plasmon (LSP) resonance are demonstrated. Au NRs are first fabricated on a sapphire substrate with colloidal lithography and secondary sputtering of Au, and then transferred into a water solution through a liftoff process. By controlling the NR geometry, the LSP dipole resonance wavelength in tissue can cover a spectral range of 1300 nm for OCT scanning of deep tissue penetration. The extinction cross sections of the fabricated Au NRs in water are estimated to give levels of 10(-10)-10(-9) cm(2) near their LSP resonance wavelengths. The fabricated Au NRs are then delivered into pig adipose samples for OCT scanning. It is observed that, when resonant Au NRs are delivered into such a sample, LSP resonance-induced Au NR absorption results in a photothermal effect, making the opaque pig adipose cells transparent. Also, the delivered Au NRs in the intercellular substance enhance the image contrast of OCT scanning through LSP resonance-enhanced scattering. By continuously OCT scanning a sample, both photothermal and image contrast enhancement effects are observed. However, by continually scanning a sample with a low scan frequency, only the image contrast enhancement effect is observed.


Asunto(s)
Oro/química , Nanoestructuras/química , Tomografía de Coherencia Óptica/métodos , Tejido Adiposo/química , Animales , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Porcinos
9.
Opt Express ; 17(1): 104-16, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19129878

RESUMEN

The transient behaviors of the dipole coupling with surface plasmon (SP) features in an Ag/dielectric-interface grating structure in order to understand the characteristics of those dipole-coupling features are demonstrated. In particular, the major decay mechanisms of those coupling features can be identified. For comparison, the time-resolved behaviors of the resonant surface plasmon polariton (SPP) coupling feature on a flat interface are also illustrated. Among the three major grating-induced SP-dipole coupling features, two of them are identified to be localized surface plasmons (LSPs). The third one is a grating-assisted SPP, which shows two decay components, corresponding to the first stage of SPP in-plane propagation and the second stage of coupling system decay. In all the dipole coupling features, metal dissipation can dominate the energy relaxation process, depending on the assumption of damping factor. All the dissipation rates are proportional to the assumed damping factor in the Drude model of the metal. The dissipation rates of the LSP and resonant SPP features are about the same as the damping rate, implying their local electron oscillation natures. The dissipation rate of the grating-assisted SSP feature is consistent with theoretical calculation. In the LSP features under study, dielectric-side emission is prominent. The coupled energy in the grating-assisted SPP feature can be efficiently stored in the coupling system due to its low emission efficiency and effective energy confinement through grating diffraction.


Asunto(s)
Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Campos Electromagnéticos , Análisis de Fourier , Luz , Modelos Teóricos , Nanopartículas , Nanotecnología , Teoría Cuántica , Análisis Espectral , Tiempo
10.
Opt Express ; 17(16): 14186-98, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19654830

RESUMEN

The fabrications of sphere-like Au nanoparticles (NPs) on sapphire, GaN, and SiO(2) substrates through the irradiation of a few pulses of 266-nm laser onto Au thin films deposited on the substrates are demonstrated. The top-view diameter, contact angle on substrate, surface population density, and surface coverage percentage of the NPs can be controlled by the Au thin film thickness, laser energy density, substrate choice, and the gas or liquid, in which the Au thin film is immersed during laser irradiation. Optical transmission measurements show clear in-plane and out-of-plane localized surface plasmon resonance (LSPR) features, including the air resonance feature dictated by the gas or liquid immersing the NPs during transmission measurement, the in-plane substrate resonance feature controlled by the substrate material and the contact angle, and the out-of-plane resonance feature, which is strongly influenced also by the substrate material and the contact angle. Numerical simulations based on the finite-element method using the experimental parameters show highly consistent LSPR spectral positions and their variation trends. From the simulation results, one can also observe the relative importance between NP absorption and scattering in contributing to the extinction. This simple laser-irradiation method for fabricating sphere-like Au NPs of no aggregation and of strong adhesion to the substrate is useful for developing polarization-sensitive LSPR bio-sensing.


Asunto(s)
Cristalización/métodos , Oro/química , Nanosferas/química , Nanosferas/efectos de la radiación , Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos , Rayos Láser , Ensayo de Materiales
11.
Nanotechnology ; 20(13): 135202, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19420488

RESUMEN

The simulation results of the coupling of a radiation dipole with a surface plasmon (SP), which is induced on a metal/dielectric interface of a single groove (SG) plus a grating structure, are demonstrated. With the SG structure, the dipole can effectively couple energy into an SP feature, which has a mixed nature of localized surface plasmon (LSP) and surface plasmon polariton (SPP). The SPP energy is confined by a grating structure with a well designed grating period and position. With such a cavity configuration, the SPP energy can be well preserved. Both the dipole-SP coupling behaviors in the frequency and time domains are numerically illustrated. The results are useful for designing a metal/dielectric interface nanostructure for implementing a SPASER (surface plasmon amplification by stimulated emission of radiation) system.


Asunto(s)
Nanoestructuras , Resonancia por Plasmón de Superficie , Algoritmos , Simulación por Computador , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Termodinámica
12.
Opt Express ; 15(14): 9048-62, 2007 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19547245

RESUMEN

A novel hybrid technique based on the boundary integral-equation method is proposed for studying the surface plasmon polariton behaviors in two-dimensional periodic structures. Considering the periodicity property of the problem, we use the plane-wave expansion concept and the periodic boundary condition instead of using the periodic Green's function. The diffraction efficiency can then be readily calculated once the equivalent electric and magnetic currents are solved that avoids invoking the numerical calculation of the radiation integral. The numerical validity is verified with the cases of highly conducting materials and practical metals. Numerical convergence can be easily achieved even in the case of a large incident angle as 80o. Based on the numerical scheme, a metal-dielectric wavy structure is designed for enhancing the transmittance of optical signal through the structure. The excitation of the coupled surface plasmon polaritons for the high transmission is demonstrated.

13.
Sci Rep ; 7(1): 3567, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620236

RESUMEN

We investigate theoretically and experimentally the environment-induced voltage shot noise in current biased Josephson junctions induced by phase particle tunneling. Quantum mechanical treatment based on the Caldeira-Leggett model with tight-binding formulation in local Wannier bases gives a clear picture of the voltage shot noise. A universal form of the zero-frequency noise spectrum is obtained, which exhibits a quadratic dependence on the mean voltage in small bias region. The quadratic dependence is verified experimentally on junctions covering a wide range of parameters, and is found also in junction arrays of various array sizes.

14.
Biomed Opt Express ; 1(4): 1060-1073, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21258530

RESUMEN

The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA