Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.677
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120603

RESUMEN

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Asunto(s)
Evasión Inmune/fisiología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Sitios de Unión , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos/inmunología , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resonancia por Plasmón de Superficie , Acoplamiento Viral
2.
Cell ; 170(1): 114-126.e15, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666113

RESUMEN

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Bases , Cruzamiento , Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Regiones Promotoras Genéticas
3.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926586

RESUMEN

Chiral superconductors, a unique class of unconventional superconductors in which the complex superconducting order parameter winds clockwise or anticlockwise in the momentum space1, represent a topologically non-trivial system with intrinsic time-reversal symmetry breaking (TRSB) and direct implications for topological quantum computing2,3. Intrinsic chiral superconductors are extremely rare, with only a few arguable examples, including UTe2, UPt3 and Sr2RuO4 (refs. 4-7). It has been suggested that chiral superconductivity may exist in non-centrosymmetric superconductors8,9, although such non-centrosymmetry is uncommon in typical solid-state superconductors. Alternatively, chiral molecules with neither mirror nor inversion symmetry have been widely investigated. We suggest that an incorporation of chiral molecules into conventional superconductor lattices could introduce non-centrosymmetry and help realize chiral superconductivity10. Here we explore unconventional superconductivity in chiral molecule intercalated TaS2 hybrid superlattices. Our studies reveal an exceptionally large in-plane upper critical field Bc2,|| well beyond the Pauli paramagnetic limit, a robust π-phase shift in Little-Parks measurements and a field-free superconducting diode effect (SDE). These experimental signatures of unconventional superconductivity suggest that the intriguing interplay between crystalline atomic layers and the self-assembled chiral molecular layers may lead to exotic topological materials. Our study highlights that the hybrid superlattices could lay a versatile path to artificial quantum materials by combining a vast library of layered crystals of rich physical properties with the nearly infinite variations of molecules of designable structural motifs and functional groups11.

4.
Nature ; 603(7903): 919-925, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090164

RESUMEN

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Células B de Memoria , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Humanos , Células B de Memoria/inmunología , Ratones , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
PLoS Pathog ; 19(11): e1011771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934757

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismo , Infecciones por Herpesviridae/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Proteínas de Ciclo Celular/metabolismo
6.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38613477

RESUMEN

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Asunto(s)
Condrocitos , Técnicas de Cocultivo , Microtia Congénita , Ingeniería de Tejidos , Proteína de Unión al GTP rhoA , Condrocitos/metabolismo , Condrocitos/citología , Humanos , Ingeniería de Tejidos/métodos , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Microtia Congénita/metabolismo , Microtia Congénita/genética , Cartílago Auricular/citología , Cartílago Auricular/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Condrogénesis/genética , Masculino , Andamios del Tejido/química , Femenino
7.
Nucleic Acids Res ; 51(13): 6981-6998, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246706

RESUMEN

The molecular mechanism underlying white adipogenesis in humans has not been fully elucidated beyond the transcriptional level. Here, we found that the RNA-binding protein NOVA1 is required for the adipogenic differentiation of human mesenchymal stem cells. By thoroughly exploring the interactions between NOVA1 and its binding RNA, we proved that NOVA1 deficiency resulted in the aberrant splicing of DNAJC10 with an in-frame premature stop codon, reduced DNAJC10 expression at the protein level and hyperactivation of the unfolded protein response (UPR). Moreover, NOVA1 knockdown abrogated the down-regulation of NCOR2 during adipogenesis and up-regulated the 47b+ splicing isoform, which led to decreased chromatin accessibility at the loci of lipid metabolism genes. Interestingly, these effects on human adipogenesis could not be recapitulated in mice. Further analysis of multispecies genomes and transcriptomes indicated that NOVA1-targeted RNA splicing is evolutionarily regulated. Our findings provide evidence for human-specific roles of NOVA1 in coordinating splicing and cell organelle functions during white adipogenesis.


Asunto(s)
Cromatina , Proteínas de Unión al ARN , Respuesta de Proteína Desplegada , Animales , Humanos , Ratones , Adipogénesis/genética , Cromatina/genética , Antígeno Ventral Neuro-Oncológico , Empalme del ARN , Proteínas de Unión al ARN/metabolismo
8.
Nano Lett ; 24(20): 6158-6164, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723204

RESUMEN

The gate-all-around (GAA) field-effect transistor (FET) holds great potential to support next-generation integrated circuits. Nanowires such as carbon nanotubes (CNTs) are one important category of channel materials in GAA FETs. Based on first-principles investigations, we propose that SiX2 (X = S, Se) nanowires are promising channel materials that can significantly elevate the performance of GAA FETs. The sub-5 nm SiX2 (X = S, Se) nanowire GAA FETs exhibit excellent ballistic transport properties that meet the requirements of the 2013 International Technology Roadmap for Semiconductors (ITRS). Compared to CNTs, they are also advantageous or at least comparable in terms of gate controllability, device dimensions, etc. Importantly, SiSe2 GAA FETs show superb gate controllability due to the ultralow minimum subthreshold swing (SSmin) that breaks "Boltzmann's tyranny". Moreover, the energy-delay product (EDP) of SiX2 GAA FETs is significantly lower than that of the CNT FETs. These features make SiX2 nanowires ideal channel material in the sub-5 nm GAA FET devices.

9.
Nano Lett ; 24(18): 5639-5646, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668743

RESUMEN

Structural complexity brings a huge challenge to the analysis of sugar chains. As a single-molecule sensor, nanopores have the potential to provide fingerprint information on saccharides. Traditionally, direct single-molecule saccharide detection with nanopores is hampered by their small size and weak affinity. Here, a carbon nitride nanopore device is developed to discern two types of trisaccharide molecules (LeApN and SLeCpN) with minor structural differences. The resolution of LeApN and SLeCpN in the mixture reaches 0.98, which has never been achieved in solid-state nanopores so far. Monosaccharide (GlcNAcpN) and disaccharide (LacNAcpN) can also be discriminated using this system, indicating that the versatile carbon nitride nanopores possess a monosaccharide-level resolution. This study demonstrates that the carbon nitride nanopores have the potential for conducting structure analysis on single-molecule saccharides.

10.
Nano Lett ; 24(7): 2181-2187, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340079

RESUMEN

Recently discovered as an intrinsic antiferromagnetic topological insulator, MnBi2Te4 has attracted tremendous research interest, as it provides an ideal platform to explore the interplay between topological and magnetic orders. MnBi2Te4 displays distinct exotic topological phases that are inextricably linked to the different magnetic structures of the material. In this study, we conducted electrical transport measurements and systematically investigated the anomalous Hall response of epitaxial MnBi2Te4 films when subjected to an external magnetic field sweep, revealing the different magnetic structures stemming from the interplay of applied fields and the material's intrinsic antiferromagnetic (AFM) ordering. Our results demonstrate that the nonsquare anomalous Hall loop is a consequence of the distinct reversal processes within individual septuple layers. These findings shed light on the intricate magnetic structures in MnBi2Te4 and related materials, offering insights into understanding their transport properties and facilitating the implementation of AFM topological electronics.

11.
Med Res Rev ; 44(2): 568-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899676

RESUMEN

Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico
12.
Med Res Rev ; 44(1): 275-364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621230

RESUMEN

Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Oxidación-Reducción
13.
J Am Chem Soc ; 146(6): 4260-4269, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305175

RESUMEN

Quantum tunneling, a phenomenon that allows particles to pass through potential barriers, can play a critical role in energy transfer processes. Here, we demonstrate that the proper design of organic-inorganic interfaces in two-dimensional (2D) hybrid perovskites allows for efficient triplet energy transfer (TET), where quantum tunneling of the excitons is the key driving force. By employing temperature-dependent and time-resolved photoluminescence and pump-probe spectroscopy techniques, we establish that triplet excitons can transfer from the inorganic lead-iodide sublattices to the pyrene ligands with rapid and weakly temperature-dependent characteristic times of approximately 50 ps. The energy transfer rates obtained based on the Marcus theory and first-principles calculations show good agreement with the experiments, indicating that the efficient tunneling of triplet excitons within the Marcus-inverted regime is facilitated by high-frequency molecular vibrations. These findings offer valuable insights into how one can effectively manipulate the energy landscape in 2D hybrid perovskites for energy transfer and the creation of diverse excitonic states.

14.
J Am Chem Soc ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865282

RESUMEN

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

15.
Breast Cancer Res ; 26(1): 4, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172915

RESUMEN

BACKGROUND: Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS: To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS: An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS: The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
16.
BMC Immunol ; 25(1): 37, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937711

RESUMEN

BACKGROUND: Although immune checkpoint inhibitors (ICIs) have brought survival benefits to non-small cell lung cancer (NSCLC), disease progression still occurs, and there is no consensus on the treatment options for these patients. We designed a network meta-analysis (NMA) to evaluate systemic treatment options for NSCLC after failure of ICIs. METHODS: PubMed, Embase, Web of Science and Cochrane Library databases were searched, then literature screening was followed by NMA. We included all Phase II and III randomized controlled trials (RCTs). Progression-free survival (PFS) and overall survival (OS) used hazard ratio (HR) for evaluation. Objective response rate (ORR) and adverse events (AEs) used odds ratio (OR) and relative risk (RR) effect sizes, respectively. R software was applied to compare the Bayesian NMA results. RESULTS: We finally included 6 studies. 1322 patients received ICI plus Chemotherapy (ICI + Chemo), ICI plus Anti-angiogenic monoclonal antibody (ICI + Antiangio-Ab), ICI plus Tyrosine kinase inhibitor (ICI + TKI), Tyrosine kinase inhibitor plus Chemotherapy (TKI + Chemo), Standard of Care (SOC), Chemotherapy (Chemo). TKI + Chemo is associated with longer PFS, higher ORR (surface under cumulative ranking curve [SUCRA], 99.7%, 88.2%), ICI + TKI achieved the longest OS (SUCRA, 82.7%). ICI + Antiangio-Ab was granted the highest safety rating for adverse events (AEs) of any grade, AEs greater than or equal to grade 3 and AEs of any grade leading to discontinuation of treatment (SUCRA, 95%, 82%, 93%). CONCLUSIONS: For NSCLC after failure of ICIs, TKI + Chemo was associated with longer PFS and higher ORR, while ICI + TKI was associated with the longest OS. In terms of safety, ICI + Antiangio-Ab was the highest.


Asunto(s)
Teorema de Bayes , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
17.
Oncologist ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478404

RESUMEN

BACKGROUND: This study aimed to compare the survival outcomes of patients with initially unresectable hepatocellular carcinoma (HCC) and portal vein tumor thrombus (PVTT) who underwent or did not undergo salvage surgery followed by a triple combination conversion treatment consisted of locoregional treatment (LRT), tyrosine kinase inhibitors (TKIs), and anti-PD-1 antibodies. METHODS: The data from 93 consecutive patients with initially unresectable HCC and PVTT across 4 medical centers were retrospectively reviewed. They were converted successfully by the triple combination treatment and underwent or did not undergo salvage resection. The baseline characteristics, conversion schemes, conversion treatment-related adverse events (CTRAEs), overall survival (OS), and progression-free survival (PFS) of the salvage surgery and non-surgery groups were compared. Multivariate Cox regression analysis was performed to identify independent risk factors for OS and PFS. Additionally, subgroup survival analysis was conducted by stratification of degree of tumor response and type of PVTT. RESULTS: Of the 93 patients, 44 underwent salvage surgery, and 49 did not undergo salvage surgery. The OS and PFS of the salvage surgery and non-surgery groups were not significantly different (P = .370 and .334, respectively). The incidence and severity of CTRAEs of the 2 groups were also comparable. Subgroup analyses revealed that for patients with complete response (CR) or types III-IV PVTT, there was a trend toward better survival in patients who did not undergo salvage surgery. Multivariate analysis showed that baseline α-fetoprotein and best tumor response per mRECIST criteria were independent prognostic factors for OS and PFS. CONCLUSIONS: For patients with initially unresectable HCC and PVTT who were successfully converted by the triple combination therapy, salvage liver resection may not be necessary, especially for the patients with CR or types III-IV PVTT.

18.
Anal Chem ; 96(24): 9808-9816, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833718

RESUMEN

Visualization of the mitochondrial state is crucial for tracking cell life processes and diagnosing disease, while fluorescent probes that can accurately assess mitochondrial status are currently scarce. Herein, a fluorescent probe named "SYN" was designed and prepared, which can target mitochondria via the mitochondrial membrane potential. Upon pathology or external stimulation, SYN can be released from the mitochondria and accumulate in the nucleolus to monitor the status of mitochondria. During this process, the brightness of the nucleolus can then serve as an indicator of mitochondrial damage. SYN has demonstrated excellent photostability in live cells as well as an extremely inert fluorescence response to bioactive molecules and the physiological pH environment of live cells. Spectroscopic titration and molecular docking studies have revealed that SYN can be lit up in nucleoli due to the high viscosity of the nucleus and the strong electrostatic interaction with the phosphate backbone of RNA. This probe is expected to be an exceptional tool based on its excellent imaging properties for tracking mitochondrial state in live cells.


Asunto(s)
Nucléolo Celular , Colorantes Fluorescentes , Mitocondrias , Mitocondrias/metabolismo , Mitocondrias/química , Humanos , Colorantes Fluorescentes/química , Nucléolo Celular/metabolismo , Células HeLa , Simulación del Acoplamiento Molecular , Imagen Óptica , Potencial de la Membrana Mitocondrial
19.
Anal Chem ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330436

RESUMEN

Normally, small-molecule fluorescent probes dependent on the mitochondrial membrane potential (MMP) are invalid for fixed cells and tissues, which limits their clinical applications when the fixation of pathological specimens is imperative. Given that mitochondrial morphology is closely associated with disease, we developed a long-chain mitochondrial probe for fixed cells and tissues, DMPQ-12, by installing a C12-alkyl chain into the quinoline moiety. In fixed cells stained with DMPQ-12, filament mitochondria and folded cristae were observed with confocal and structural illumination microscopy, respectively. In titration test with three major phospholipids, DMPQ-12 exhibited a stronger binding force to mitochondria-exclusive cardiolipin, revealing its targeting mechanism. Moreover, mitochondrial morphological changes in the three lesion models were clearly visualized in fixed cells. Finally, by DMPQ-12, three kinds of mitochondria with different morphologies were observed in situ in fixed muscle tissues. This work breaks the conventional concept that organic fluorescent probes only stain mitochondria with normal membrane potentials and opens new avenues for comprehensive mitochondrial investigations in research and clinical settings.

20.
Breast Cancer Res Treat ; 204(2): 299-308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38175448

RESUMEN

BACKGROUND: Thymidine kinase 1 (TK1) plays a pivotal role in DNA synthesis and cellular proliferation. TK1 has been studied as a prognostic marker and as an early indicator of treatment response in human epidermal growth factor 2 (HER2)-negative early and metastatic breast cancer (BC). However, the prognostic and predictive value of serial TK1 activity in HER2-positive BC remains unknown. METHODS: In the PREDIX HER2 trial, 197 HER2-positive BC patients were randomized to neoadjuvant trastuzumab, pertuzumab, and docetaxel (DPH) or trastuzumab emtansine (T-DM1), followed by surgery and adjuvant epirubicin and cyclophosphamide. Serum samples were prospectively collected from all participants at multiple timepoints: at baseline, after cycle 1, 2, 4, and 6, at end of adjuvant therapy, annually for a total period of 5 years and/or at the time of recurrence. The associations of sTK1 activity with baseline characteristics, pathologic complete response (pCR), event-free survival (EFS), and disease-free survival (DFS) were evaluated. RESULTS: No association was detected between baseline sTK1 levels and all the baseline clinicopathologic characteristics. An increase of TK1 activity from baseline to cycle 2 was seen in all cases. sTK1 level at baseline, after 2 and 4 cycles was not associated with pCR status. After a median follow-up of 58 months, 23 patients had EFS events. There was no significant effect between baseline or cycle 2 sTK1 activity and time to event. A non-significant trend was noted among patents with residual disease (non-pCR) and high sTK1 activity at the end of treatment visit, indicating a potentially worse long-term prognosis. CONCLUSION: sTK1 activity increased following neoadjuvant therapy for HER2-positive BC but was not associated with patient outcomes or treatment benefit. However, the post-surgery prognostic value in patients that have not attained pCR warrants further investigation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02568839. Registered on 6 October 2015.


Asunto(s)
Neoplasias de la Mama , Timidina Quinasa , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Terapia Neoadyuvante , Suecia , Receptor ErbB-2/metabolismo , Biomarcadores de Tumor/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Trastuzumab , Ado-Trastuzumab Emtansina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA