Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7917): 41-47, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788191

RESUMEN

The discovery of the Higgs boson, ten years ago, was a milestone that opened the door to the study of a new sector of fundamental physical interactions. We review the role of the Higgs field in the Standard Model of particle physics and explain its impact on the world around us. We summarize the insights into Higgs physics revealed so far by ten years of work, discuss what remains to be determined and outline potential connections of the Higgs sector with unsolved mysteries of particle physics.

2.
Rep Prog Phys ; 85(8)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413691

RESUMEN

We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.

3.
Phys Rev Lett ; 129(1): 011805, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841564

RESUMEN

The diphoton channel at lepton colliders, e^{+}e^{-}(µ^{+}µ^{-})→γγ, has a remarkable feature that the leading new physics contribution comes only from dimension-eight operators. This contribution is subject to a set of positivity bounds, derived from the fundamental principles of quantum field theory, such as unitarity, locality, analyticity and Lorentz invariance. These positivity bounds are thus applicable to the most direct observable: the diphoton cross section. This unique feature provides a clear, robust, and unambiguous test of these principles. We estimate the capability of various future lepton colliders in probing the dimension-eight operators and testing the positivity bounds in this channel. We show that positivity bounds can lift certain flat directions among the effective operators and significantly change the perspectives of a global analysis. We also discuss the positivity bounds of the Zγ/ZZ processes which are related to the γγ ones, but are more complicated due to the massive Z boson.

4.
Phys Rev Lett ; 125(13): 131806, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034473

RESUMEN

The XENON1T collaboration has observed an excess in electronic recoil events below 5 keV over the known background, which could originate from beyond-the-standard-model physics. The solar axion is a well-motivated model that has been proposed to explain the excess, though it has tension with astrophysical observations. The axions traveling from the Sun can be absorbed by the electrons in the xenon atoms via the axion-electron coupling. Meanwhile, they can also scatter with the atoms through the inverse Primakoff process via the axion-photon coupling, which emits a photon and mimics the electronic recoil signals. We found that the latter process cannot be neglected. After including the keV photon produced via the inverse Primakoff process in the detection, the tension with the astrophysical constraints can be significantly reduced. We also explore scenarios involving additional new physics to further alleviate the tension with the astrophysical bounds.

5.
Phys Rev Lett ; 122(13): 131801, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31012618

RESUMEN

We explore the physics potential of using precision timing information at the LHC in searches for long-lived particles (LLPs). In comparison with the light standard model particles, the decay products of massive LLPs arrive at detectors with time delays around the nanosecond scale. We propose new strategies to take advantage of this time delay feature by using initial state radiation to time stamp the collision event and require at least one LLP to decay within the detector. This search strategy is effective for a broad range of models. In addition to outlining this general approach, we demonstrate its effectiveness with the projected reach for two benchmark scenarios: a Higgs boson decaying into a pair of LLPs, and pair production of long-lived neutralinos in the gauge mediated supersymmetry breaking models. Our strategy increases the sensitivity to the lifetime of the LLP by two orders of magnitude or more and particularly exhibits a better behavior with a linear dependence on the lifetime in the large lifetime region compared to traditional LLP searches. The timing information significantly reduces the standard model background and provides a powerful new dimension for LLP searches.

6.
Phys Rev Lett ; 115(18): 181602, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565456

RESUMEN

Light top superpartners play a key role in stabilizing the electroweak scale in supersymmetric theories. For R-parity conserved supersymmetric models, traditional searches are not sensitive to the compressed regions. In this Letter, we propose a new method targeting this region, with top squark and neutralino mass splitting ranging from m_{t[over ˜]}-m_{χ}≳m_{t} to about 20 GeV. In particular, we focus on the signal process in which a pair of top squarks are produced in association with a hard jet, and we define a new observable R_{M} whose distribution has a peak in this compressed region. The position of the peak is closely correlated with m_{t[over ˜]}. We show that for the 13 TeV LHC with a luminosity of 3000 fb^{-1}, this analysis can extend the reach of the top squark in the compressed region to m_{t[over ˜]} around 800 GeV.

7.
Phys Rev Lett ; 112(22): 221803, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24949758

RESUMEN

We reveal a set of novel decay topologies for the 125 GeV Higgs boson in supersymmetry which are initiated by its decay into a pair of neutralinos, and discuss their collider search strategies. This category of exotic Higgs decays is characterized by the collider signature: visible objects+E_{T}, with E_{T} dominantly arising from escaping dark matter particles. Their benchmark arises naturally in the Peccei-Quinn symmetry limit of the minimal supersymmetric standard model singlet extensions, which is typified by the coexistence of three light particles: singletlike scalar h_{1} and pseudoscalar a_{1}, and singlinolike neutralino χ_{1}, all with masses of ≲10 GeV, and the generic suppression of the exotic decays of the 125 GeV Higgs boson h_{2}→h_{1}h_{1}, a_{1}a_{1} and χ_{1}χ_{1}, however. As an illustration, we study the decay topology: h_{2}→χ_{1}χ_{2}, where the binolike χ_{2} decays to h_{1}χ_{1} or a_{1}χ_{1}, and h_{1}/a_{1}→ff[over ¯], with ff[over ¯]=µ^{+}µ^{-}, bb[over ¯]. In the dimuon case (m_{h_{1}/a_{1}}∼1 GeV), a statistical sensitivity of S/sqrt[B]>6σ can be achieved easily at the 8 TeV LHC, assuming σ(pp→Wh_{2})/σ(pp→Wh_{SM})Br(h_{2}→µ^{+}µ^{-}χ_{1}χ_{1})=0.1. In the bb[over ¯] case (m_{h_{1}/a_{1}}∼45 GeV), 600 fb^{-1} data at the 14 TeV LHC can lead to a statistical sensitivity of S/sqrt[B]>5σ, assuming σ(pp→Zh_{2})/σ(pp→Zh_{SM})Br(h_{2}→bb[over ¯]χ_{1}χ_{1})=0.5. These exotic decays open a new avenue for exploring new physics couplings with the 125 GeV Higgs boson at colliders.

8.
Gen Relativ Gravit ; 54(12): 156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465478

RESUMEN

Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.

9.
Phys Rev Lett ; 106(12): 121805, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517303

RESUMEN

We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, Υ, and flavor physics.

10.
Phys Rev Lett ; 100(13): 131804, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18517937

RESUMEN

We show that, in string models with the minimal supersymmetric standard model residing on D-branes, the bino mass can be generated in a geometrically separated hidden sector. Hypercharge mediation thus naturally teams up with anomaly mediation. The mixed scenario predicts a distinctive yet viable superpartner spectrum, provided that the ratio alpha between the bino and gravitino mass lies in the range 0.05 < or = |alpha| < or = 0.25 and m(3/2) > or = 35 TeV. We summarize some of the experimental signatures of this scenario.

11.
Phys Rev Lett ; 100(4): 041802, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18352261

RESUMEN

We consider a class of models in which supersymmetry breaking is communicated dominantly via a U1' gauge interaction, which also helps solve the mu problem. Such models can emerge naturally in top-down constructions and are a version of split supersymmetry. The spectrum contains heavy sfermions, Higgsinos, exotics, and Z' approximately 10-100 TeV, light gauginos approximately 100-1000 GeV, a light Higgs boson approximately 140 GeV, and a light singlino. A specific set of U1' charges and exotics is analyzed, and we present five benchmark models. The implications for the gluino lifetime, cold dark matter, and the gravitino and neutrino masses are discussed.

12.
Phys Rev Lett ; 90(14): 141803, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12731907

RESUMEN

The decay B(d)-->phi K(S) is a special probe of physics beyond the standard model (SM), since it has no SM tree level contribution. Motivated by recent data suggesting a deviation from the SM for its time-dependent CP asymmetry, we examine supersymmetric explanations. Chirality preserving contributions are generically small, unless gluino is relatively light. Higgs contributions are also too small to explain a large asymmetry. Chirality flipping LR and RL gluino contributions actually can provide sizable effects without conflict with all related results. We discuss how various insertions can be distinguished, and argue the needed sizes of mass insertions are reasonable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA