Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.489
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 632(8027): 1092-1100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048016

RESUMEN

Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.


Asunto(s)
Vías Nerviosas , Percepción del Dolor , Dolor , Efecto Placebo , Animales , Femenino , Masculino , Ratones , Analgesia , Anticipación Psicológica/fisiología , Señalización del Calcio , Cerebelo/citología , Cerebelo/fisiología , Cognición/fisiología , Electrofisiología , Perfilación de la Expresión Génica , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Dolor/fisiopatología , Dolor/prevención & control , Dolor/psicología , Manejo del Dolor/métodos , Manejo del Dolor/psicología , Manejo del Dolor/tendencias , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología , Umbral del Dolor/psicología , Puente/citología , Puente/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células de Purkinje/fisiología , Receptores Opioides/metabolismo , Transmisión Sináptica
2.
Nature ; 624(7990): 164-172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057571

RESUMEN

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Asunto(s)
Envejecimiento , Biomarcadores , Enfermedad , Salud , Especificidad de Órganos , Proteoma , Proteómica , Adulto , Humanos , Envejecimiento/sangre , Enfermedad de Alzheimer/sangre , Biomarcadores/sangre , Encéfalo/metabolismo , Disfunción Cognitiva/sangre , Proteoma/análisis , Aprendizaje Automático , Estudios de Cohortes , Progresión de la Enfermedad , Insuficiencia Cardíaca/sangre , Matriz Extracelular/metabolismo , Sinapsis/metabolismo , Calcificación Vascular/sangre , Corazón
3.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750259

RESUMEN

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Asunto(s)
Glucólisis , Fosfoglicerato Mutasa , Hormonas Tiroideas , Humanos , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosforilación , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Ratones , Proteínas de Unión a Hormona Tiroide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
4.
N Engl J Med ; 391(3): 203-212, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38884324

RESUMEN

BACKGROUND: Tenecteplase is an effective thrombolytic agent for eligible patients with stroke who are treated within 4.5 hours after the onset of stroke. However, data regarding the effectiveness of tenecteplase beyond 4.5 hours are limited. METHODS: In a trial conducted in China, we randomly assigned patients with large-vessel occlusion of the middle cerebral artery or internal carotid artery who had salvageable brain tissue as identified on perfusion imaging and who did not have access to endovascular thrombectomy to receive tenecteplase (at a dose of 0.25 mg per kilogram of body weight; maximum dose, 25 mg) or standard medical treatment 4.5 to 24 hours after the time that the patient was last known to be well (including after stroke on awakening and unwitnessed stroke). The primary outcome was the absence of disability, which was defined as a score of 0 or 1 on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability), at day 90. The key safety outcomes were symptomatic intracranial hemorrhage and death. RESULTS: A total of 516 patients were enrolled; 264 were randomly assigned to receive tenecteplase and 252 to receive standard medical treatment. Less than 2% of the patients (4 in the tenecteplase group and 5 in the standard-treatment group) underwent rescue endovascular thrombectomy. Treatment with tenecteplase resulted in a higher percentage of patients with a modified Rankin scale score of 0 or 1 at 90 days than standard medical treatment (33.0% vs. 24.2%; relative rate, 1.37; 95% confidence interval, 1.04 to 1.81; P = 0.03). Mortality at 90 days was 13.3% with tenecteplase and 13.1% with standard medical treatment, and the incidence of symptomatic intracranial hemorrhage within 36 hours after treatment was 3.0% and 0.8%, respectively. CONCLUSIONS: In this trial involving Chinese patients with ischemic stroke due to large-vessel occlusion, most of whom did not undergo endovascular thrombectomy, treatment with tenecteplase administered 4.5 to 24 hours after stroke onset resulted in less disability and similar survival as compared with standard medical treatment, and the incidence of symptomatic intracranial hemorrhage appeared to be higher. (Funded by the National Natural Science Foundation of China and others; TRACE-III ClinicalTrials.gov number, NCT05141305.).


Asunto(s)
Fibrinolíticos , Accidente Cerebrovascular Isquémico , Tenecteplasa , Tiempo de Tratamiento , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibrinolíticos/uso terapéutico , Fibrinolíticos/efectos adversos , Fibrinolíticos/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/cirugía , Hemorragias Intracraneales/etiología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/cirugía , Tenecteplasa/uso terapéutico , Tenecteplasa/efectos adversos , Trombectomía , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/efectos adversos , Activador de Tejido Plasminógeno/uso terapéutico , China
5.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491870

RESUMEN

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Asunto(s)
Respuesta al Choque por Frío , Frutas , Regulación de la Expresión Génica de las Plantas , Musa , Proteínas de Plantas , Musa/genética , Musa/metabolismo , Musa/fisiología , Frutas/genética , Frutas/metabolismo , Frutas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Pared Celular/metabolismo , Almidón/metabolismo
6.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36611253

RESUMEN

Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.


Asunto(s)
Genómica , Mutación Silenciosa , Humanos , Genómica/métodos , Programas Informáticos , Algoritmos
7.
Nat Mater ; 23(2): 271-280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957270

RESUMEN

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Estilbenos , Animales , Ratones , Fototerapia/métodos , Nanopartículas/química , Oro/química , Mamíferos
8.
Am J Pathol ; 194(1): 101-120, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37827215

RESUMEN

The Wnt/ß-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/ß-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/ß-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating ß-catenin. Transforming growth factor-ß1 inhibited corin expression, accompanied by activation of ß-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-ß1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/ß-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/ß-catenin signaling and from fibrosis following UUO and UIRI.


Asunto(s)
Enfermedades Renales , Vía de Señalización Wnt , Ratones , Animales , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Riñón/patología , Fibrosis , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
9.
FASEB J ; 38(7): e23607, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581245

RESUMEN

Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1ß, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.


Asunto(s)
Enfermedades Autoinmunes , Succinatos , Uveítis , Animales , Ratones , Células Th17 , Factor 2 Relacionado con NF-E2/metabolismo , Inflamación/metabolismo , Enfermedades Autoinmunes/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Células TH1
10.
Cell Mol Life Sci ; 81(1): 23, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200266

RESUMEN

The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Metabolismo de los Lípidos , Mitocondrias , Estrés Oxidativo , Células Epiteliales , Glucosa , Lípidos
11.
Nano Lett ; 24(29): 8956-8963, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984788

RESUMEN

Nanoparticle assemblies with interparticle ohmic contacts are crucial for nanodevice fabrication. Despite tremendous progress in DNA-programmable nanoparticle assemblies, seamlessly welding discrete components into welded continuous three-dimensional (3D) configurations remains challenging. Here, we introduce a single-stranded DNA-encoded strategy to customize welded metal nanostructures with tunable morphologies and plasmonic properties. We demonstrate the precise welding of gold nanoparticle assemblies into continuous metal nanostructures with interparticle ohmic contacts through chemical welding in solution. We find that the welded gold nanoparticle assemblies show a consistent morphology with welded efficiency over 90%, such as the rod-like, triangular, and tetrahedral metal nanostructures. Next, we show the versatility of this strategy by welding gold nanoparticle assemblies of varied sizes and shapes. Furthermore, the experiment and simulation show that the welded gold nanoparticle assemblies exhibit defined plasmonic coupling. This single-stranded DNA encoded welding system may provide a new route for accurately building functional plasmonic nanomaterials and devices.

12.
Nano Lett ; 24(15): 4682-4690, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563501

RESUMEN

Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Enzimas Inmovilizadas/química , Peroxidasa de Rábano Silvestre/química , Glucosa Oxidasa/química , ADN/química
13.
J Cell Mol Med ; 28(10): e18396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801304

RESUMEN

Previous studies have found that ferroptosis plays an important role in a variety of neurological diseases. However, the precise role of ferroptosis in the multiple sclerosis patients remains uncertain. We defined and validated a computational metric of ferroptosis levels. The ferroptosis scores were computed using the AUCell method, which reflects the enrichment scores of ferroptosis-related genes through gene ranking. The reliability of the ferroptosis score was assessed using various methods, involving cells induced to undergo ferroptosis by six different ferroptosis inducers. Through a comprehensive approach integrating snRNA-seq, spatial transcriptomics, and spatial proteomics data, we explored the role of ferroptosis in multiple sclerosis. Our findings revealed that among seven sampling regions of different white matter lesions, the edges of active lesions exhibited the highest ferroptosis score, which was associated with activation of the phagocyte system. Remyelination lesions exhibit the lowest ferroptosis score. In the cortex, ferroptosis score were elevated in neurons, relevant to a variety of neurodegenerative disease-related pathways. Spatial transcriptomics demonstrated a significant co-localization among ferroptosis score, neurodegeneration and microglia, which was verified by spatial proteomics. Furthermore, we established a diagnostic model of multiple sclerosis based on 24 ferroptosis-related genes in the peripheral blood. Ferroptosis might exhibits a dual role in the context of multiple sclerosis, relevant to both neuroimmunity and neurodegeneration, thereby presenting a promising and novel therapeutic target. Ferroptosis-related genes in the blood that could potentially serve as diagnostic and prognostic markers for multiple sclerosis.


Asunto(s)
Ferroptosis , Esclerosis Múltiple , Proteómica , Ferroptosis/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Humanos , Proteómica/métodos , Transcriptoma , Microglía/metabolismo , Microglía/patología , Perfilación de la Expresión Génica , Biología Computacional/métodos , Neuronas/metabolismo , Neuronas/patología , Multiómica
14.
Stroke ; 55(10): 2431-2438, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39315825

RESUMEN

BACKGROUND: Branch atheromatous disease (BAD)-related stroke has emerged as a meaningful subtype of ischemic stroke yet remained understudied. We aimed to investigate the demographic, clinical, therapeutic, and prognostic characteristics of BAD-related stroke. METHODS: The BAD-study was a nationwide, multicenter, prospective, observational cohort study in 20 Chinese hospitals from June 2021 to June 2023, enrolling patients aged 18 to 80 years with BAD-related stroke within 72 hours of onset. Eligible single subcortical infarct in the territory of lenticulostriate artery and paramedian pontine artery was included. Clinical, laboratory, and treatment data were collected at baseline. The primary outcome was a proportion of good outcomes (modified Rankin Scale score, 0-2) at 90 days. Main secondary outcomes included early neurological deterioration (END), cerebrovascular event, major bleeding, and excellent outcome (modified Rankin Scale score, 0-1) during 90-day follow-up. RESULTS: We finally enrolled 476 patients, with a median age of 60 (interquartile range, 53-68) years, and 70.2% were male. The median National Institutes of Health Stroke Scale score was 3 (interquartile range, 2-6) at enrollment. Involvement of the lenticulostriate artery was more common than the paramedian pontine artery (60.7% versus 39.3%). END occurred in 14.7% of patients, with a median time from onset of 38 (interquartile range, 22-62) hours. The rates of good and excellent outcomes were 86.5% and 72%, respectively. Its 90-day stroke recurrence rate was 1.9%. Acute-phase therapy (from onset to 7 days of enrollment) showed heterogeneity and was not associated with prognosis. Multivariable logistic regression analysis identified the National Institutes of Health Stroke Scale score ≥4 at admission and END as negative predictors and extracranial artery stenosis as a positive predictor of good outcomes. Age ≥60 years, National Institutes of Health Stroke Scale score ≥4 at admission, and END were negative predictors of excellent outcomes. CONCLUSIONS: With distinct demographic, clinical, and prognostic characteristics, along with a high incidence of END and a low risk of stroke recurrence, BAD-related stroke could be categorized as a separate disease entity. Moreover, its acute-phase treatment strategies were undetermined, awaiting further high-quality studies.


Asunto(s)
Accidente Cerebrovascular Isquémico , Imagen por Resonancia Magnética , Humanos , Masculino , Persona de Mediana Edad , Femenino , Anciano , Estudios Prospectivos , Pronóstico , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Adulto , Anciano de 80 o más Años , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/epidemiología
15.
J Am Chem Soc ; 146(25): 17094-17102, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867462

RESUMEN

The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.


Asunto(s)
ADN , ADN/química , Nanopartículas del Metal/química , Luminiscencia
16.
J Am Chem Soc ; 146(9): 5883-5893, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408317

RESUMEN

DNA monolayers with inherent chirality play a pivotal role across various domains including biosensors, DNA chips, and bioelectronics. Nonetheless, conventional DNA chiral monolayers, typically constructed from single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), often lack structural orderliness and design flexibility at the interface. Structural DNA nanotechnology has emerged as a promising solution to tackle these challenges. In this study, we present a strategy for crafting highly adaptable twisted DNA origami-based chiral monolayers. These structures exhibit distinct interfacial assembly characteristics and effectively mitigate the structural disorder of dsDNA monolayers, which is constrained by a limited persistence length of ∼50 nm of dsDNA. We highlight the spin-filtering capabilities of seven representative DNA origami-based chiral monolayers, demonstrating a maximal one-order-of-magnitude increase in spin-filtering efficiency per unit area compared with conventional dsDNA chiral monolayers. Intriguingly, our findings reveal that the higher-order tertiary chiral structure of twisted DNA origami further enhances the spin-filtering efficiency. This work paves the way for the rational design of DNA chiral monolayers.


Asunto(s)
ADN de Cadena Simple , ADN , ADN/química , Nanotecnología , Conformación de Ácido Nucleico
17.
J Am Chem Soc ; 146(36): 25253-25262, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39196310

RESUMEN

Nanoparticle (NP) delivery systems have been actively exploited for cancer therapy and vaccine development. Nevertheless, the major obstacle to targeted delivery lies in the substantial liver sequestration of NPs. Here we report a DNA-engineered approach to circumvent liver phagocytosis for enhanced tumor-targeted delivery of nanoagents in vivo. We find that a monolayer of DNA molecules on the NP can preferentially adsorb a dysopsonin protein in the serum to induce functionally invisibility to livers; whereas the tumor-specific uptake is triggered by the subsequent degradation of the DNA shell in vivo. The degradation rate of DNA shells is readily tunable by the length of coated DNA molecules. This DNA-engineered invisibility cloaking (DEIC) is potentially generic as manifested in both Ag2S quantum dot- and nanoliposome-based tumor-targeted delivery in mice. Near-infrared-II imaging reveals a high tumor-to-liver ratio of up to ∼5.1, approximately 18-fold higher than those with conventional nanomaterials. This approach may provide a universal strategy for high-efficiency targeted delivery of theranostic agents in vivo.


Asunto(s)
ADN , Nanopartículas , ADN/química , Animales , Ratones , Nanopartículas/química , Humanos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Hígado/metabolismo
18.
Neurobiol Dis ; 190: 106373, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072165

RESUMEN

In Alzheimer's disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aß), Tau and pTau are the most accepted and well validated biomarkers. Several methods and platforms exist to measure those biomarkers, leading to challenges in combining data across studies. Thus, there is a need to identify methods that harmonize and standardize these values. We used a Z-score based approach to harmonize CSF and amyloid imaging data from multiple cohorts and compared GWAS results using this approach with currently accepted methods. We also used a generalized mixture model to calculate the threshold for biomarker-positivity. Based on our findings, our normalization approach performed as well as meta-analysis and did not lead to any spurious results. In terms of dichotomization, cutoffs calculated with this approach were very similar to those reported previously. These findings show that the Z-score based harmonization approach can be applied to heterogeneous platforms and provides biomarker cut-offs consistent with the classical approaches without requiring any additional data.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
19.
Plant Cell Physiol ; 65(1): 49-67, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37767757

RESUMEN

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas. MaCCCH33-like2 interacts directly with the promoters of three genes: isoamylase2 (MaISA2), sugar transporter14-like (MaSUR14-like) and ß-d-xylosidase23 (MaXYL23), all of which are responsible for encoding proteins involved in the degradation of starch and cell wall components. Additionally, MaCCCH33-like2 forms interactions with abscisic acid-insensitive 5 (ABI5)-like and ethylene F-box protein 1 (MaEBF1), resulting in enhanced binding and activation of promoters of genes related to starch and cell wall degradation. When MaCCCH33-like2 is transiently and ectopically overexpressed in 'Fenjiao' banana and tomato fruit, it facilitates softening and ripening processes by promoting the degradation of cell wall components and starch and the production of ethylene. Conversely, the temporary silencing of MaCCCH33-like2 using virus-induced gene silencing (VIGS) inhibits softening and ripening in the 'Fenjiao' banana by suppressing ethylene synthesis, as well as starch and cell wall degradation. Furthermore, the promoter activity of MaCCCH33-like2 is regulated by MaABI5-like. Taken together, we have uncovered a novel MaCCCH33-like2/MaEBF1/MaABI5-like module that participates in fruit softening regulation in bananas.


Asunto(s)
Musa , Almidón , Almidón/metabolismo , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Dedos de Zinc , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
N Engl J Med ; 385(27): 2520-2530, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34708996

RESUMEN

BACKGROUND: Comparisons between ticagrelor and clopidogrel for the secondary prevention of stroke in CYP2C19 loss-of-function carriers have not been extensively performed. METHODS: We conducted a randomized, double-blind, placebo-controlled trial at 202 centers in China involving patients with a minor ischemic stroke or transient ischemic attack (TIA) who carried CYP2C19 loss-of-function alleles. Patients were assigned within 24 hours after symptom onset, in a 1:1 ratio, to receive ticagrelor (180 mg on day 1 followed by 90 mg twice daily on days 2 through 90) and placebo clopidogrel or to receive clopidogrel (300 mg on day 1 followed by 75 mg once daily on days 2 through 90) and placebo ticagrelor; both groups received aspirin for 21 days. The primary efficacy outcome was new stroke, and the primary safety outcome was severe or moderate bleeding, both within 90 days. RESULTS: A total of 11,255 patients were screened and 6412 patients were enrolled, with 3205 assigned to the ticagrelor group and 3207 to the clopidogrel group. The median age of the patients was 64.8 years, and 33.8% were women; 98.0% belonged to the Han Chinese ethnic group. Stroke occurred within 90 days in 191 patients (6.0%) in the ticagrelor group and 243 patients (7.6%) in the clopidogrel group (hazard ratio, 0.77; 95% confidence interval, 0.64 to 0.94; P = 0.008). Secondary outcomes were generally in the same direction as the primary outcome. Severe or moderate bleeding occurred in 9 patients (0.3%) in the ticagrelor group and in 11 patients (0.3%) in the clopidogrel group; any bleeding occurred in 170 patients (5.3%) and 80 patients (2.5%), respectively. CONCLUSIONS: Among Chinese patients with minor ischemic stroke or TIA who were carriers of CYP2C19 loss-of-function alleles, the risk of stroke at 90 days was modestly lower with ticagrelor than with clopidogrel. The risk of severe or moderate bleeding did not differ between the two treatment groups, but ticagrelor was associated with more total bleeding events than clopidogrel. (Funded by the Ministry of Science and Technology of the People's Republic of China and others; CHANCE-2 ClinicalTrials.gov number, NCT04078737.).


Asunto(s)
Clopidogrel/uso terapéutico , Citocromo P-450 CYP2C19/genética , Ataque Isquémico Transitorio/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Mutación con Pérdida de Función , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Ticagrelor/uso terapéutico , Anciano , Aspirina/uso terapéutico , Clopidogrel/efectos adversos , Método Doble Ciego , Quimioterapia Combinada , Femenino , Humanos , Incidencia , Ataque Isquémico Transitorio/genética , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/prevención & control , Masculino , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Prevención Secundaria , Ticagrelor/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA