Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(11): 1588-1599, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36266363

RESUMEN

Dysfunctional CD8+ T cells, which have defective production of antitumor effectors, represent a major mediator of immunosuppression in the tumor microenvironment. Here, we show that SUSD2 is a negative regulator of CD8+ T cell antitumor function. Susd2-/- effector CD8+ T cells showed enhanced production of antitumor molecules, which consequently blunted tumor growth in multiple syngeneic mouse tumor models. Through a quantitative mass spectrometry assay, we found that SUSD2 interacted with interleukin (IL)-2 receptor α through sushi domain-dependent protein interactions and that this interaction suppressed the binding of IL-2, an essential cytokine for the effector functions of CD8+ T cells, to IL-2 receptor α. SUSD2 was not expressed on regulatory CD4+ T cells and did not affect the inhibitory function of these cells. Adoptive transfer of Susd2-/- chimeric antigen receptor T cells induced a robust antitumor response in mice, highlighting the potential of SUSD2 as an immunotherapy target for cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Receptores de Interleucina-2/metabolismo , Transducción de Señal , Microambiente Tumoral
2.
EMBO J ; 42(2): e111673, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36514940

RESUMEN

Adenosine N6-methylation (m6A) and N6,2'-O-dimethylation (m6Am) are regulatory modifications of eukaryotic mRNAs. m6Am formation is catalyzed by the methyl transferase phosphorylated CTD-interacting factor 1 (PCIF1); however, the pathophysiological functions of this RNA modification and PCIF1 in cancers are unclear. Here, we show that PCIF1 expression is upregulated in colorectal cancer (CRC) and negatively correlates with patient survival. CRISPR/Cas9-mediated depletion of PCIF1 in human CRC cells leads to loss of cell migration, invasion, and colony formation in vitro and loss of tumor growth in athymic mice. Pcif1 knockout in murine CRC cells inhibits tumor growth in immunocompetent mice and enhances the effects of anti-PD-1 antibody treatment by decreasing intratumoral TGF-ß levels and increasing intratumoral IFN-γ, TNF-α levels, and tumor-infiltrating natural killer cells. We further show that PCIF1 modulates CRC growth and response to anti-PD-1 in a context-dependent mechanism with PCIF1 directly targeting FOS, IFITM3, and STAT1 via m6Am modifications. PCIF1 stabilizes FOS mRNA, which in turn leads to FOS-dependent TGF-ß regulation and tumor growth. While during immunotherapy, Pcif1-Fos-TGF-ß, as well as Pcif1-Stat1/Ifitm3-IFN-γ axes, contributes to the resistance of anti-PD-1 therapy. Collectively, our findings reveal a role of PCIF1 in promoting CRC tumorigenesis and resistance to anti-PD-1 therapy, supporting that the combination of PCIF1 inhibition with anti-PD-1 treatment is a potential therapeutic strategy to enhance CRC response to immunotherapy. Finally, we developed a lipid nanoparticles (LNPs) and chemically modified small interfering RNAs (CMsiRNAs)-based strategy to silence PCIF1 in vivo and found that this treatment significantly reduced tumor growth in mice. Our results therefore provide a proof-of-concept for tumor growth suppression using LNP-CMsiRNA to silence target genes in cancer.


Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Proteínas de la Membrana/metabolismo , Metilación , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39210507

RESUMEN

Synthetic lethality (SL) has shown great promise for the discovery of novel targets in cancer. CRISPR double-knockout (CDKO) technologies can only screen several hundred genes and their combinations, but not genome-wide. Therefore, good SL prediction models are highly needed for genes and gene pairs selection in CDKO experiments. However, lack of scalable SL properties prevents generalizability of SL interactions to out-of-sample data, thereby hindering modeling efforts. In this paper, we recognize that SL connectivity is a scalable and generalizable SL property. We develop a novel two-step multilayer encoder for individual sample-specific SL prediction model (MLEC-iSL), which predicts SL connectivity first and SL interactions subsequently. MLEC-iSL has three encoders, namely, gene, graph, and transformer encoders. MLEC-iSL achieves high SL prediction performance in K562 (AUPR, 0.73; AUC, 0.72) and Jurkat (AUPR, 0.73; AUC, 0.71) cells, while no existing methods exceed 0.62 AUPR and AUC. The prediction performance of MLEC-iSL is validated in a CDKO experiment in 22Rv1 cells, yielding a 46.8% SL rate among 987 selected gene pairs. The screen also reveals SL dependency between apoptosis and mitosis cell death pathways.


Asunto(s)
Mutaciones Letales Sintéticas , Humanos , Células K562 , Biología Computacional/métodos , Sistemas CRISPR-Cas , Algoritmos , Células Jurkat , Técnicas de Inactivación de Genes , Neoplasias/genética
4.
Proc Natl Acad Sci U S A ; 120(5): e2210361120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689652

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major health problem worldwide. Due to the fast emergence of SARS-CoV-2 variants, understanding the molecular mechanisms of viral pathogenesis and developing novel inhibitors are essential and urgent. Here, we investigated the potential roles of N6,2'-O-dimethyladenosine (m6Am), one of the most abundant modifications of eukaryotic messenger ribonucleic acid (mRNAs), in SARS-CoV-2 infection of human cells. Using genome-wide m6Am-exo-seq, RNA sequencing analysis, and Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, we demonstrate that phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1), a cap-specific adenine N6-methyltransferase, plays a major role in facilitating infection of primary human lung epithelial cells and cell lines by SARS-CoV-2, variants of concern, and other coronaviruses. We show that PCIF1 promotes infection by sustaining expression of the coronavirus receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) via m6Am-dependent mRNA stabilization. In PCIF1-depleted cells, both ACE2/TMPRSS2 expression and viral infection are rescued by re-expression of wild-type, but not catalytically inactive, PCIF1. These findings suggest a role for PCIF1 and cap m6Am in regulating SARS-CoV-2 susceptibility and identify a potential therapeutic target for prevention of infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , ARN Mensajero/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Serina Endopeptidasas
5.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608036

RESUMEN

HBXIP, also named LAMTOR5, has been well characterized as a transcriptional co-activator in various cancers. However, the role of Hbxip in normal development remains unexplored. Here, we demonstrated that homozygous knockout of Hbxip leads to embryonic lethality, with retarded growth around E7.5, and that depletion of Hbxip compromises the self-renewal of embryonic stem cells (ESCs), with reduced expression of pluripotency genes, reduced cell proliferation and decreased colony-forming capacity. In addition, both Hbxip-/- ESCs and E7.5 embryos displayed defects in ectodermal and mesodermal differentiation. Mechanistically, Hbxip interacts with other components of the Ragulator complex, which is required for mTORC1 activation by amino acids. Importantly, ESCs depleted of Ragulator subunits, Lamtor3 or Lamtor4, displayed differentiation defects similar to those of Hbxip-/- ESCs. Moreover, Hbxip-/-, p14-/- and p18-/- mice, lacking subunits of the Ragulator complex, also shared similar phenotypes, embryonic lethality and retarded growth around E7-E8. Thus, we conclude that Hbxip plays a pivotal role in the development and differentiation of the epiblast, as well as the self-renewal and differentiation of ESCs, through activating mTORC1 signaling.


Asunto(s)
Desarrollo Embrionario , Células Madre Embrionarias , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Transducción de Señal
6.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37651610

RESUMEN

The accurate prediction of the effect of amino acid mutations for protein-protein interactions (PPI $\Delta \Delta G$) is a crucial task in protein engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework to predict PPI  $\Delta \Delta G$. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein-protein complex structures annotated with PPI $\Delta \Delta G$ values. MpbPPI employs a multi-task pre-training technique, forcing the framework to learn comprehensive backbone and side chain geometric regulations of protein-protein complexes at different scales. After pre-training, MpbPPI can generate high-quality representations capturing the effective geometric characteristics of labeled protein-protein complexes for downstream $\Delta \Delta G$ predictions. MpbPPI serves as a scalable framework supporting different sources of mutant-type (MT) protein-protein complexes for flexible application. Experimental results on four benchmark datasets demonstrate that MpbPPI is a state-of-the-art framework for PPI $\Delta \Delta G$ predictions. The data and source code are available at https://github.com/arantir123/MpbPPI.


Asunto(s)
Aminoácidos , Benchmarking , Mutación , Descubrimiento de Drogas , Aprendizaje
7.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36578163

RESUMEN

Understanding drug selectivity mechanism is a long-standing issue for helping design drugs with high specificity. Designing drugs targeting cyclin-dependent kinases (CDKs) with high selectivity is challenging because of their highly conserved binding pockets. To reveal the underlying general selectivity mechanism, we carried out comprehensive analyses from both the thermodynamics and kinetics points of view on a representative CDK12 inhibitor. To fully capture the binding features of the drug-target recognition process, we proposed to use kinetic residue energy analysis (KREA) in conjunction with the community network analysis (CNA) to reveal the underlying cooperation effect between individual residues/protein motifs to the binding/dissociating process of the ligand. The general mechanism of drug selectivity in CDKs can be summarized as that the difference of structural cooperation between the ligand and the protein motifs leads to the difference of the energetic contribution of the key residues to the ligand. The proposed mechanisms may be prevalent in drug selectivity issues, and the insights may help design new strategies to overcome/attenuate the drug selectivity associated problems.


Asunto(s)
Quinasas Ciclina-Dependientes , Simulación de Dinámica Molecular , Quinasas Ciclina-Dependientes/metabolismo , Ligandos , Unión Proteica , Termodinámica
8.
PLoS Pathog ; 19(10): e1011694, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37831643

RESUMEN

Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.


Asunto(s)
Flavivirus , Metiltransferasas , Humanos , Metiltransferasas/genética , Flavivirus/genética , Flavivirus/metabolismo , S-Adenosilmetionina/metabolismo , Mutagénesis
9.
PLoS Pathog ; 19(11): e1011804, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033141

RESUMEN

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , SARS-CoV-2 , Anticuerpos de Dominio Único/farmacología , Epítopos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales
10.
J Immunol ; 210(3): 245-258, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548464

RESUMEN

DM9 domain containing protein (DM9CP) is a family of newly identified recognition receptors exiting in most organisms except plants and mammals. In the current study, to our knowledge, a novel DM9CP-5 (CgDM9CP-5) with two tandem DM9 repeats and high expression level in gill was identified from the Pacific oyster, Crassostrea gigas. The deduced amino acid sequence of CgDM9CP-5 shared 62.1% identity with CgDM9CP-1 from C. gigas, and 47.8% identity with OeFAMeT from Ostrea edulis. The recombinant CgDM9CP-5 (rCgDM9CP-5) was able to bind d-mannose, LPS, peptidoglycan, and polyinosinic-polycytidylic acid, as well as fungi Pichia pastoris, Gram-negative bacteria Escherichia coli and Vibrio splendidus, and Gram-positive bacteria Staphylococcus aureus. The mRNA transcript of CgDM9CP-5 was highly expressed in gill, and its protein was mainly distributed in gill mucus. After the stimulations with V. splendidus and mannose, mRNA expression of CgDM9CP-5 in oyster gill was significantly upregulated and reached the peak level at 6 and 24 h, which was 13.58-fold (p < 0.05) and 14.01-fold (p < 0.05) of that in the control group, respectively. CgDM9CP-5 was able to bind CgIntegrin both in vivo and in vitro. After CgDM9CP-5 or CgIntegrin was knocked down by RNA interference, the phosphorylation levels of JNK and P38 in the MAPK pathway decreased, and the expression levels of CgIL-17s (CgIL-17-3, -4, -5, and -6), Cg-Defh1, Cg-Defh2, and CgMolluscidin were significantly downregulated. These results suggested that there was a pathway of DM9CP-5-Integrin-MAPK mediated by CgDM9CP-5 to regulate the release of proinflammatory factors and defensins in C. gigas.


Asunto(s)
Crassostrea , Integrinas , Animales , Integrinas/metabolismo , Crassostrea/genética , Secuencia de Aminoácidos , Bacterias Gramnegativas/fisiología , ARN Mensajero/genética , Hemocitos , Inmunidad Innata/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA