Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(26): e2310426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229551

RESUMEN

Sodium-ion batteries (SIBs), as the next-generation high-performance electrochemical energy storage devices, have attracted widespread attention due to their cost-effectiveness and wide geographical distribution of sodium. As a crucial component of the structure of SIBs, the anode material plays a crucial role in determining its electrochemical performance. Significantly, metal phosphide exhibits remarkable application prospects as an anode material for SIBs because of its low redox potential and high theoretical capacity. However, due to volume expansion limitations and other factors, the rate and cycling performance of metal phosphides have gradually declined. To address these challenges, various viable solutions have been explored. In this paper, the recent research progress of metal phosphide materials for SIBs is systematically reviewed, including the synthesis strategy of metal phosphide, the storage mechanism of sodium ions, and the application of metal phosphide in electrochemical aspects. In addition, future challenges and opportunities based on current developments are presented.

2.
Cell Physiol Biochem ; 38(1): 185-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26784898

RESUMEN

BACKGROUND/AIMS: Human SIRT1 is reported to be involved in tumorgenesis, mainly due to its modulating effect on p53 by deacetylation on lysine382. A large quantity of SIRT1 inhibitors was applied in chemotherapeutic study, but few of them were applied into clinical trials. METHODS AND RESULTS: In the current study, a novel series of compounds with 1,4-bispiperazinecarbodithioic acid methyl esters scaffold were characterized to have inhibitory potency to SIRT1 by molecular docking and biochemical evaluation. Further cell level study revealed that one of the most potent SIRT1 inhibitors, compound 3a, is cell active. It can upregulate the amount of p53 by accumulating the K382 acetylation of p53, which lead to the stabilization of p53 in human gastric cancer cell line MGC-803 cells. Meanwhile, we also found compound 3a can inactivate SIRT2 in cells, which suggests the compound as a non-selective SIRT inhibitor. CONCLUSION: All these findings indicate that compound 3a is a potent, reversible and cell active SIRT1 inhibitor and deserves further investigation as an anticancer agent or a biological tool.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores , Tiocarbamatos/farmacología , Triazoles/farmacología , Acetilación/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Sirtuina 1/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Tiocarbamatos/química , Triazoles/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Comput Biol Med ; 171: 108186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394804

RESUMEN

BACKGROUND: Segmenting colorectal polyps presents a significant challenge due to the diverse variations in their size, shape, texture, and intricate backgrounds. Particularly demanding are the so-called "camouflaged" polyps, which are partially concealed by surrounding tissues or fluids, adding complexity to their detection. METHODS: We present CPSNet, an innovative model designed for camouflaged polyp segmentation. CPSNet incorporates three key modules: the Deep Multi-Scale-Feature Fusion Module, the Camouflaged Object Detection Module, and the Multi-Scale Feature Enhancement Module. These modules work collaboratively to improve the segmentation process, enhancing both robustness and accuracy. RESULTS: Our experiments confirm the effectiveness of CPSNet. When compared to state-of-the-art methods in colon polyp segmentation, CPSNet consistently outperforms the competition. Particularly noteworthy is its performance on the ETIS-LaribPolypDB dataset, where CPSNet achieved a remarkable 2.3% increase in the Dice coefficient compared to the Polyp-PVT model. CONCLUSION: In summary, CPSNet marks a significant advancement in the field of colorectal polyp segmentation. Its innovative approach, encompassing multi-scale feature fusion, camouflaged object detection, and feature enhancement, holds considerable promise for clinical applications.


Asunto(s)
Pólipos del Colon , Humanos , Pólipos del Colon/diagnóstico por imagen , Colon , Procesamiento de Imagen Asistido por Computador
4.
Dalton Trans ; 53(11): 4900-4921, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38321942

RESUMEN

With the advent of lithium-ion batteries (LIBs), the selection and application of electrode materials have been the subject of much discussion and study. Among them, graphite has been widely investigated for use as electrode materials in LIBs due to its abundant resources, low cost, safety and electrochemical diversity. While it is commonly recognized that conventional graphite materials utilized for commercial purposes have a limited theoretical capacity, there has been a steady emergence of new and improved carbonaceous materials for use as anodes in light of the progressive development of LIBs. In this paper, the latest research progress of various carbon materials in LIBs is systematically and comprehensively reviewed. Firstly, the rocking chair charging and discharging mechanism of LIBs is briefly introduced in this paper, using graphite anodes as an example. After that, the general categories of carbonaceous materials are highlighted, and the recent research on the recent progress of various carbonaceous materials (graphite-based, amorphous carbon-based, and nanocarbon-based) used in LIB anodes is presented separately based on the classification of the structural morphology, emphasizing the influence of the morphology and structure of carbon-based materials on the electrochemical performance of the batteries. Finally, the current challenges of carbonaceous materials in LIB applications and the future development of other novel carbonaceous materials are envisioned.

5.
Dalton Trans ; 52(9): 2548-2560, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752364

RESUMEN

Room-temperature sodium-sulfur batteries (RT-Na/S batteries) with high reversible capacity (1675 mA h g-1) and excellent energy density (1274 W h kg-1) based on abundant resources of the metal Na have become a research hotspot recently. However, the intermediate product sodium polysulfides (NaPSs) generated during the charge-discharge process are easily dissolved in the ether electrolyte and transferred from the sulfur cathode to the metallic sodium surface, resulting in rapid capacity decay (shuttle effect), which seriously affects the practical application of RT-Na/S batteries. Herein, the mechanism and recent research progress in suppressing the shuttle effect of the sulfur cathode in RT-Na/S batteries are summarized. Strategies such as carbon-based materials physically fixing NaPSs, polar materials absorbing NaPSs to reduce their dissolution, and catalytic materials accelerating the transformation of NaPSs into final products are provided. Challenges and insights into high-performance sulfur electrodes for optimizing RT-Na/S batteries are discussed.

6.
ACS Omega ; 7(49): 45590-45597, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530231

RESUMEN

This work using the density functional theory simulates the strong potential of the CuO-decorated PtSe2 (CuO-PtSe2) monolayer as a recycle use C2H2 and C2H4 sensor in order to realize the arc discharge monitoring based on the nano-sensing method. Results indicate that CuO decoration causes strong n-type doping for the PtSe2 monolayer with a binding force (E b) of -2.49 eV, and the CuO-PtSe2 monolayer exhibits strong chemisorption and electron-accepting properties in the two gas systems, with the adsorption energy (E ad) and charge transfer (Q T) obtained as -1.19 eV and 0.040 e for the C2H2 system and as -1.24 eV and 0.011 e for the C2H4 system, respectively. The density of states reveals the deformed electronic property of the CuO-PtSe2 monolayer in gas adsorptions, and its sensing mechanism based on the change of electrical conductivity and the work function are uncovered. This work sheds light on the metal-oxide-decorated transition-metal dichalcogenides for gas sensor applications and would provide the guidance to explore novel sensing materials in many other fields as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA