Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289118

RESUMEN

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Asunto(s)
Endopeptidasas , Enterovirus Humano D , Interacciones Microbiota-Huesped , Virus Oncolíticos , Piroptosis , SARS-CoV-2 , Humanos , Línea Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Enterovirus Humano D/enzimología , Enterovirus Humano D/genética , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/virología , Gasderminas/antagonistas & inhibidores , Gasderminas/genética , Gasderminas/metabolismo , Viroterapia Oncolítica , Virus Oncolíticos/enzimología , Virus Oncolíticos/genética , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
PLoS Pathog ; 19(11): e1011792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956198

RESUMEN

Melanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKKα/ß, subsequently leading to IRF3 and NF-κB phosphorylation. However, the specific E3 ubiquitin ligase for MDA5 K63-polyubiquitination has not been well characterized. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral immune agents indicates that SARS-CoV-2 escapes from antiviral immune responses via several unknown mechanisms. Here, we report that SARS-CoV-2 nonstructural protein 8 (nsp8) acts as a suppressor of antiviral innate immune and inflammatory responses to promote infection of SARS-CoV-2. It downregulates the expression of type I interferon, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and TRIM4 and impairing TRIM4-mediated MDA5 K63-linked polyubiquitination. Our findings reveal that nsp8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.


Asunto(s)
COVID-19 , Interferón Tipo I , SARS-CoV-2 , Humanos , COVID-19/genética , Inmunidad Innata , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal
3.
Plant Physiol ; 194(3): 1794-1814, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036294

RESUMEN

Bud dormancy is an important physiological process during winter. Its release requires a certain period of chilling. In pear (Pyrus pyrifolia), the abscisic acid (ABA)-induced expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes represses bud break, whereas exogenous gibberellin (GA) promotes dormancy release. However, with the exception of ABA and GA, the regulatory effects of phytohormones on dormancy remain largely uncharacterized. In this study, we confirmed brassinosteroids (BRs) and jasmonic acid (JA) contribute to pear bud dormancy release. If chilling accumulation is insufficient, both 24-epibrassinolide (EBR) and methyl jasmonic acid (MeJA) can promote pear bud break, implying that they positively regulate dormancy release. BRASSINAZOLE RESISTANT 2 (BZR2), which is a BR-responsive transcription factor, inhibited PpyDAM3 expression and accelerated pear bud break. The transient overexpression of PpyBZR2 increased endogenous GA, JA, and JA-Ile levels. In addition, the direct interaction between PpyBZR2 and MYELOCYTOMATOSIS 2 (PpyMYC2) enhanced the PpyMYC2-mediated activation of Gibberellin 20-oxidase genes PpyGA20OX1L1 and PpyGA20OX2L2 transcription, thereby increasing GA3 contents and accelerating pear bud dormancy release. Interestingly, treatment with 5 µm MeJA increased the bud break rate, while also enhancing PpyMYC2-activated PpyGA20OX expression and increasing GA3,4 contents. The 100 µm MeJA treatment decreased the PpyMYC2-mediated activation of the PpyGA20OX1L1 and PpyGA20OX2L2 promoters and suppressed the inhibitory effect of PpyBZR2 on PpyDAM3 transcription, ultimately inhibiting pear bud break. In summary, our data provide insights into the crosstalk between the BR and JA signaling pathways that regulate the BZR2/MYC2-mediated pathway in the pear dormancy release process.


Asunto(s)
Brasinoesteroides , Ciclopentanos , Oxilipinas , Pyrus , Triazoles , Brasinoesteroides/farmacología , Pyrus/genética , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico
4.
Biochem Biophys Res Commun ; 720: 150066, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749193

RESUMEN

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Asunto(s)
Antígeno CD47 , Progresión de la Enfermedad , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Humanos , Animales , Línea Celular Tumoral , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Escape del Tumor , Evasión Inmune , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Estadificación de Neoplasias
5.
Nat Chem Biol ; 18(11): 1214-1223, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35982226

RESUMEN

The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. However, the mechanism governing the TRIM7-substrate association remains to be defined. Here we report the crystal structures of TRIM7 in complex with 2C peptides of human enterovirus. Structure-guided studies reveal the C-terminal glutamine residue of 2C as the primary determinant for TRIM7 binding. Leveraged by this finding, we identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. Crystal structures of TRIM7 in complex with multiple peptides derived from SARS-CoV-2 proteins display the same glutamine-end recognition mode. Furthermore, TRIM7 could trigger the ubiquitination and degradation of these substrates, possibly representing a new Gln/C-degron pathway. Together, these findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.


Asunto(s)
COVID-19 , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Glutamina/metabolismo , SARS-CoV-2 , Ubiquitinación , Antivirales , Proteínas de Motivos Tripartitos/metabolismo
6.
J Med Virol ; 95(3): e28561, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36755358

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a poor inducer of innate antiviral immunity, and the underlying mechanism still needs further investigation. Here, we reported that SARS-CoV-2 NSP7 inhibited the production of type I and III interferons (IFNs) by targeting the RIG-I/MDA5, Toll-like receptor (TLR3)-TRIF, and cGAS-STING signaling pathways. SARS-CoV-2 NSP7 suppressed the expression of IFNs and IFN-stimulated genes induced by poly (I:C) transfection and infection with Sendai virus or SARS-CoV-2 virus-like particles. NSP7 impaired type I and III IFN production activated by components of the cytosolic dsRNA-sensing pathway, including RIG-I, MDA5, and MAVS, but not TBK1, IKKε, and IRF3-5D, an active form of IRF3. In addition, NSP7 also suppressed TRIF- and STING-induced IFN responses. Mechanistically, NSP7 associated with RIG-I and MDA5 prevented the formation of the RIG-I/MDA5-MAVS signalosome and interacted with TRIF and STING to inhibit TRIF-TBK1 and STING-TBK1 complex formation, thus reducing the subsequent IRF3 phosphorylation and nuclear translocation that are essential for IFN induction. In addition, ectopic expression of NSP7 impeded innate immune activation and facilitated virus replication. Taken together, SARS-CoV-2 NSP7 dampens type I and III IFN responses via disruption of the signal transduction of the RIG-I/MDA5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways, thus providing novel insights into the interactions between SARS-CoV-2 and innate antiviral immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2/metabolismo , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Transducción de Señal , Interferones , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Antivirales , Proteínas Adaptadoras del Transporte Vesicular/genética
7.
J Med Virol ; 95(4): e28680, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929724

RESUMEN

SARS-CoV-2 has developed a variety of approaches to counteract host innate antiviral immunity to facilitate its infection, replication and pathogenesis, but the molecular mechanisms that it employs are still not been fully understood. Here, we found that SARS-CoV-2 NSP8 inhibited the production of type I and III interferons (IFNs) by acting on RIG-I/MDA5 and the signaling molecules TRIF and STING. Overexpression of NSP8 downregulated the expression of type I and III IFNs stimulated by poly (I:C) transfection and infection with SeV and SARS-CoV-2. In addition, NSP8 impaired IFN expression triggered by overexpression of the signaling molecules RIG-I, MDA5, and MAVS, instead of TBK1 and IRF3-5D, an active form of IRF3. From a mechanistic view, NSP8 interacts with RIG-I and MDA5, and thereby prevents the assembly of the RIG-I/MDA5-MAVS signalosome, resulting in the impaired phosphorylation and nuclear translocation of IRF3. NSP8 also suppressed the TRIF- and STING- induced IFN expression by directly interacting with them. Moreover, ectopic expression of NSP8 promoted virus replications. Taken together, SARS-CoV-2 NSP8 suppresses type I and III IFN responses by disturbing the RIG-I/MDA5-MAVS complex formation and targeting TRIF and STING signaling transduction. These results provide new insights into the pathogenesis of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas Adaptadoras del Transporte Vesicular/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferones , SARS-CoV-2/metabolismo , Transducción de Señal
8.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658349

RESUMEN

Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.

9.
J Virol ; 95(17): e0074721, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133897

RESUMEN

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is bringing an unprecedented health crisis to the world. To date, our understanding of the interaction between SARS-CoV-2 and host innate immunity is still limited. Previous studies reported that SARS-CoV-2 nonstructural protein 12 (NSP12) was able to suppress interferon-ß (IFN-ß) activation in IFN-ß promoter luciferase reporter assays, which provided insights into the pathogenesis of COVID-19. In this study, we demonstrated that IFN-ß promoter-mediated luciferase activity was reduced during coexpression of NSP12. However, we could show NSP12 did not affect IRF3 or NF-κB activation. Moreover, IFN-ß production induced by Sendai virus (SeV) infection or other stimulus was not affected by NSP12 at mRNA or protein level. Additionally, the type I IFN signaling pathway was not affected by NSP12, as demonstrated by the expression of interferon-stimulated genes (ISGs). Further experiments revealed that different experiment systems, including protein tags and plasmid backbones, could affect the readouts of IFN-ß promoter luciferase assays. In conclusion, unlike as previously reported, our study showed SARS-CoV-2 NSP12 protein is not an IFN-ß antagonist. It also rings the alarm on the general usage of luciferase reporter assays in studying SARS-CoV-2. IMPORTANCE Previous studies investigated the interaction between SARS-CoV-2 viral proteins and interferon signaling and proposed that several SARS-CoV-2 viral proteins, including NSP12, could suppress IFN-ß activation. However, most of these results were generated from IFN-ß promoter luciferase reporter assay and have not been validated functionally. In our study, we found that, although NSP12 could suppress IFN-ß promoter luciferase activity, it showed no inhibitory effect on IFN-ß production or its downstream signaling. Further study revealed that contradictory results could be generated from different experiment systems. On one hand, we demonstrated that SARS-CoV-2 NSP12 could not suppress IFN-ß signaling. On the other hand, our study suggests that caution needs to be taken with the interpretation of SARS-CoV-2-related luciferase assays.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Interferón beta , Regiones Promotoras Genéticas , SARS-CoV-2 , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/antagonistas & inhibidores , Interferón beta/biosíntesis , Interferón beta/genética , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
10.
J Med Virol ; 94(11): 5174-5188, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35765167

RESUMEN

A characteristic feature of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the dysregulated immune response with impaired type I and III interferon (IFN) expression and an overwhelming inflammatory cytokine storm. RIG-I-like receptors (RLRs) and cGAS-STING signaling pathways are responsible for sensing viral infection and inducing IFN production to combat invading viruses. Multiple proteins of SARS-CoV-2 have been reported to modulate the RLR signaling pathways to achieve immune evasion. Although SARS-CoV-2 infection also activates the cGAS-STING signaling by stimulating micronuclei formation during the process of syncytia, whether SARS-CoV-2 modulates the cGAS-STING pathway requires further investigation. Here, we screened 29 SARS-CoV-2-encoded viral proteins to explore the viral proteins that affect the cGAS-STING signaling pathway and found that SARS-CoV-2 open reading frame 10 (ORF10) targets STING to antagonize IFN activation. Overexpression of ORF10 inhibits cGAS-STING-induced interferon regulatory factor 3 phosphorylation, translocation, and subsequent IFN induction. Mechanistically, ORF10 interacts with STING, attenuates the STING-TBK1 association, and impairs STING oligomerization and aggregation and STING-mediated autophagy; ORF10 also prevents the endoplasmic reticulum (ER)-to-Golgi trafficking of STING by anchoring STING in the ER. Taken together, these findings suggest that SARS-CoV-2 ORF10 impairs the cGAS-STING signaling by blocking the translocation of STING and the interaction between STING and TBK1 to antagonize innate antiviral immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Autofagia , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Sistemas de Lectura Abierta , Proteínas Serina-Treonina Quinasas/genética , SARS-CoV-2 , Proteínas Virales/metabolismo
11.
J Med Virol ; 93(9): 5376-5389, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33913550

RESUMEN

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Evasión Inmune/genética , Interferones/inmunología , Nucleotidiltransferasas/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2/inmunología , Receptor Toll-Like 3/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteína 58 DEAD Box/genética , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Interferones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Plásmidos/química , Plásmidos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Receptores Inmunológicos/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 3/genética , Transfección , Células Vero , Replicación Viral/inmunología
12.
J Med Virol ; 92(9): 1684-1689, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32343415

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has spread worldwide. Whether antibodies are important for the adaptive immune responses against SARS-CoV-2 infection needs to be determined. Here, 26 cases of COVID-19 in Jinan, China, were examined and shown to be mild or with common clinical symptoms, and no case of severe symptoms was found among these patients. Strikingly, a subset of these patients had SARS-CoV-2 and virus-specific IgG coexist for an unexpectedly long time, with two cases for up to 50 days. One COVID-19 patient who did not produce any SARS-CoV-2-bound IgG successfully cleared SARS-CoV-2 after 46 days of illness, revealing that without antibody-mediated adaptive immunity, innate immunity alone may still be powerful enough to eliminate SARS-CoV-2. This report may provide a basis for further analysis of both innate and adaptive immunity in SARS-CoV-2 clearance, especially in nonsevere cases.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Biomarcadores , COVID-19/sangre , Niño , Preescolar , Femenino , Humanos , Inmunidad Innata , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Carga Viral , Adulto Joven
13.
J Med Virol ; 92(11): 2693-2701, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497323

RESUMEN

The ongoing outbreak of a new coronavirus (2019-nCoV, or severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) has caused an epidemic of the acute respiratory syndrome known as coronavirus disease (COVID-19) in humans. SARS-CoV-2 rapidly spread to multiple regions of China and multiple other countries, posing a serious threat to public health. The spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 may use the same host cellular receptor, angiotensin-converting enzyme 2 (ACE2), for entering host cells. The affinity between ACE2 and the SARS-CoV-2 S protein is much higher than that of ACE2 binding to the SARS-CoV S protein, explaining why SARS-CoV-2 seems to be more readily transmitted from human to human. Here, we report that ACE2 can be significantly upregulated after infection of various viruses, including SARS-CoV-1 and SARS-CoV-2, or by the stimulation with inflammatory cytokines such as interferons. We propose that SARS-CoV-2 may positively induce its cellular entry receptor, ACE2, to accelerate its replication and spread; high inflammatory cytokine levels increase ACE2 expression and act as high-risk factors for developing COVID-19, and the infection of other viruses may increase the risk of SARS-CoV-2 infection. Therefore, drugs targeting ACE2 may be developed for the future emerging infectious diseases caused by this cluster of coronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/inmunología , Receptores Virales/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/virología , Expresión Génica , Células HEK293 , Humanos , Interferones/farmacología , Análisis por Micromatrices , Unión Proteica , Receptores Virales/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Regulación hacia Arriba
14.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30104205

RESUMEN

Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-ß, which has a domain architecture similar to that of mouse p202. Like p202, IFI16-ß contains two HIN domains, but lacks the pyrin domain. IFI16-ß is ubiquitously expressed in various human tissues and cells. Its mRNA levels are also elevated in leukocytes of patients with lupus, virus-infected cells, and cells treated with interferon-ß or phorbol ester. IFI16-ß co-localizes with AIM2 in the cytoplasm, whereas IFI16-α is predominantly found in the nucleus. IFI16-ß interacts with AIM2 to impede the formation of a functional AIM2-ASC complex. In addition, IFI16-ß sequesters cytoplasmic dsDNA and renders it unavailable for AIM2 sensing. Enforced expression of IFI16-ß inhibits the activation of AIM2 inflammasome, whereas knockdown of IFI16-ß augments interleukin-1ß secretion triggered by dsDNA but not dsRNA Thus, cytoplasm-localized IFI16-ß is functionally equivalent to mouse p202 that exerts an inhibitory effect on AIM2 inflammasome.


Asunto(s)
Proteínas de Unión al ADN/genética , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Animales , Núcleo Celular/genética , ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-1beta/genética , Ratones , Isoformas de Proteínas/genética , ARN Bicatenario/genética , ARN Mensajero/genética
15.
Int J Med Sci ; 17(17): 2635-2643, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162791

RESUMEN

Histone deacetylase 6 (HDAC6) controls many cellular processes via its catalyzing deacetylation of downstream substrates or interacting with its partner proteins. Dysregulation of HDAC6 signaling links to many diseases. Our previous study has been reported peptidyl-prolyl cis/trans isomerase, and NIMA-interacting 1 (Pin1) involving in HDAC6-mediated cell motility. To gain insight into precisely coordination of HDAC6 and Pin1 in cell migration, shRNA-mediated gene silencing and ectopic expression were applied to manipulate protein expression level to evaluate relationship between HDAC6 and Pin1 expression. Quantitative RT-PCR and the cycloheximide (CHX) chase assay resulted in HDAC6 expression is correlated with Pin1 level in H1299 cells. It hints that the Pin1 increases HDAC6 expression through increased transcripts and posttranslational stabilization. Furthermore, wound healing assay and transwell invasion assay evidenced the contribution of Pin1 on cell motility in H1299 cells. Our data suggest that Pin1 acts as an important regulator to manage HDAC6 expression for cell motility in lung cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 6/genética , Neoplasias Pulmonares/genética , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Línea Celular Tumoral , Movimiento Celular/genética , Silenciador del Gen , Histona Desacetilasa 6/metabolismo , Humanos , Neoplasias Pulmonares/patología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Estabilidad Proteica , Transducción de Señal/genética , Regulación hacia Arriba
16.
Nucleic Acids Res ; 46(8): 4054-4071, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29547894

RESUMEN

STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-ß that dominantly inhibits innate nucleic acid sensing. STING-ß without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-ß correlated inversely with IFN-ß production. The expression of STING-ß declined in patients with lupus, in which type I IFNs are commonly overproduced. STING-ß suppressed the induction of IFNs, IFN-stimulated genes and other cytokines by various immunostimulatory agents including cyclic dinucleotides, DNA, RNA and viruses, whereas depletion of STING-ß showed the opposite effect. STING-ß interacted with STING-α and antagonized its antiviral function. STING-ß also interacted with TBK1 and prevented it from binding with STING-α, TRIF or other transducers. In addition, STING-ß bound to 2'3'-cGAMP and impeded its binding with and activation of STING-α, leading to suppression of IFN-ß production. Taken together, STING-ß sequesters 2'3'-cGAMP second messenger and other transducer molecules to inhibit innate nucleic acid sensing dominantly.


Asunto(s)
Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Animales , Línea Celular , ADN/fisiología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , FN-kappa B/metabolismo , Fosforilación , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fenómenos Fisiológicos de los Virus
17.
Adv Exp Med Biol ; 1209: 79-108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728866

RESUMEN

Pattern recognition receptors (PRRs) are sensors of exogenous and endogenous "danger" signals from pathogen-associated molecular patterns (PAMPs), and damage associated molecular patterns (DAMPs), while autophagy can respond to these signals to control homeostasis. Almost all PRRs can induce autophagy directly or indirectly. Toll-like receptors (TLRs), Nod-like receptors (NLRs), retinoic acid-inducible gene-I-like receptors (RLRs), and cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway can induce autophagy directly through Beclin-1 or LC3-dependent pathway, while the interactions with the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1), CD91/Calreticulin, and TLRs/HSPs are achieved by protein, Ca2+, and mitochondrial homeostasis. Autophagy presents antigens to PRRs and helps to clean the pathogens. In addition, the induced autophagy can form a negative feedback regulation of PRRs-mediated inflammation in cell/disease-specific manner to maintain homeostasis and prevent excessive inflammation. Understanding the interaction between PRRs and autophagy in a specific disease will promote drug development for immunotherapy. Here, we focus on the interactions between PRRs and autophagy and how they affect the inflammatory response.


Asunto(s)
Autofagia , Inflamación , Receptores de Reconocimiento de Patrones , Autofagia/inmunología , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
18.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468880

RESUMEN

Severe complications of Zika virus (ZIKV) infection might be caused by inflammation, but how ZIKV induces proinflammatory cytokines is not understood. In this study, we show opposite regulatory effects of the ZIKV NS5 protein on interferon (IFN) signaling. Whereas ZIKV and its NS5 protein were potent suppressors of type I and type III IFN signaling, they were found to activate type II IFN signaling. Inversely, IFN-γ augmented ZIKV replication. NS5 interacted with STAT2 and targeted it for ubiquitination and degradation, but it had no influence on STAT1 stability or nuclear translocation. The recruitment of STAT1-STAT2-IRF9 to IFN-ß-stimulated genes was compromised when NS5 was expressed. Concurrently, the formation of STAT1-STAT1 homodimers and their recruitment to IFN-γ-stimulated genes, such as the gene encoding the proinflammatory cytokine CXCL10, were augmented. Silencing the expression of an IFN-γ receptor subunit or treatment of ZIKV-infected cells with a JAK2 inhibitor suppressed viral replication and viral induction of IFN-γ-stimulated genes. Taken together, our findings provide a new mechanism by which the ZIKV NS5 protein differentially regulates IFN signaling to facilitate viral replication and cause diseases. This activity might be shared by a group of viral IFN modulators.IMPORTANCE Mammalian cells produce three types of interferons to combat viral infection and to control host immune responses. To replicate and cause diseases, pathogenic viruses have developed different strategies to defeat the action of host interferons. Many viral proteins, including the Zika virus (ZIKV) NS5 protein, are known to be able to suppress the antiviral property of type I and type III interferons. Here we further show that the ZIKV NS5 protein can also boost the activity of type II interferon to induce cellular proteins that promote inflammation. This is mediated by the differential effect of the ZIKV NS5 protein on a pair of cellular transcription factors, STAT1 and STAT2. NS5 induces the degradation of STAT2 but promotes the formation of STAT1-STAT1 protein complexes, which activate genes controlled by type II interferon. A drug that specifically inhibits the IFN-γ receptor or STAT1 shows an anti-ZIKV effect and might also have anti-inflammatory activity.


Asunto(s)
Interferón gamma/metabolismo , Proteínas no Estructurales Virales/inmunología , Virus Zika/inmunología , Línea Celular , Humanos , Unión Proteica , Factor de Transcripción STAT2/metabolismo , Transducción de Señal
19.
Int J Med Sci ; 15(13): 1573-1581, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443180

RESUMEN

Histone deacetylase 6 (HDAC6), a member of the HDAC enzymes, has been reported to play substantial roles in many cellular processes. Evidence shows that deregulation of HDAC6 may be involved in the progression of some cancers, neurodegenerative diseases, and inflammatory disorders. However, little is known regarding the effect of post-translational modification of HDAC6 on cellular localization and biological functions. In the present study, we identified four phosphorylation sites on HDAC6 under normal conditions by mass spectrometry analysis. Two phosphorylation sites, pSer22 and pSer412, are recognized as Pin1 (peptidyl-prolyl cis/trans isomerase NIMA-interacting 1) substrates. Pin1 can interact with HDAC6 and be involved in HDAC6-mediated cell motility. Pin1 depletion abrogates HDAC6-induced cell migration and invasion in H1299 lung cancer cells. The findings of this study suggest that Pin1 might regulate HDAC6-mediated cell motility through alteration of protein conformation and function. Our results indicate the complexity of activity regulation between HDAC6 and Pin1, expanding knowledge regarding the multifunctional roles of Pin1 in tumorigenesis and cancer progression.


Asunto(s)
Movimiento Celular/fisiología , Histona Desacetilasa 6/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Histona Desacetilasa 6/genética , Humanos , Espectrometría de Masas , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Fosforilación/genética , Fosforilación/fisiología
20.
J Virol ; 90(8): 3902-3912, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26819312

RESUMEN

UNLABELLED: Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-ß was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.


Asunto(s)
Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Productos del Gen tax/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Células Jurkat , Leucemia-Linfoma de Células T del Adulto/virología , FN-kappa B/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA