Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(2): 135-154, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38084582

RESUMEN

BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Aorta/metabolismo , Células Endoteliales/metabolismo , Homeostasis , Canales Iónicos/metabolismo
2.
Development ; 147(4)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31988189

RESUMEN

Cellular proliferation is a basic process during organ development, tissue homeostasis and disease progression. Likewise, after injury typically multiple cell lineages respond to various cues and proliferate to initiate repair and/or remodeling of the injured tissue. Unravelling the specific role of proliferation of one cell type and its lineage in the context of the whole organism during tissue regeneration and/or disease progression would provide valuable information on these processes. Here, we report a new genetic system that allows cell proliferation to be inhibited in a tissue-specific manner. We generated Cre- or Dre-inducible p21-GFP (ip21-GFP) transgenic mice that enable experimentally induced permanent cell cycle arrest of specific cell lineages of interest, while genetically marking these cells. This system allows for the inhibition of pathogenic cell proliferation. We found that cardiac fibroblast proliferation inhibition significantly reduced scar formation, and promoted neovascularization and cardiomyocyte survival. Additionally, we found that inhibition of one type of cell proliferation (namely, hepatocytes) induces the lineage conversion of another type cells (i.e. ductal cells) during tissue regeneration. These results validate the use of ip21-GFP mice as a new genetic tool for cell lineage-specific inhibition of cell proliferation in vivo.


Asunto(s)
Proliferación Celular , Regulación de la Expresión Génica , Técnicas Genéticas , Alelos , Animales , Linaje de la Célula , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Femenino , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes , Corazón/crecimiento & desarrollo , Corazón/fisiología , Hepatocitos/citología , Hepatocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/patología , Miocitos Cardíacos/citología
3.
Chemistry ; 29(17): e202203306, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36453091

RESUMEN

A novel and green method for the synthesis of 3-thiocyanatobenzothiophenes via electrochemical-oxidation promoted difunctionalization of active alkyne has been developed. In this protocol, inexpensive and easily available potassium thiocyanate was chosen as the thiocyanation reagent, 2-alkynylthioanisoles as the substrates, a variety of 3-thiocyanatobenzothiophenes were obtained in moderate to good yields under oxidant- and catalyst-free conditions. Moreover, the continuous flow system has good applicability for this transformation, the use of continuous flow system has overcome the disadvantage of low efficiency in traditional electrochemical amplification, and realized the stable and excellent yields of target products in the scale-up reactions.

4.
Pathol Int ; 73(3): 109-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36285444

RESUMEN

Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.


Asunto(s)
Neoplasias Laríngeas , Factores de Transcripción , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/genética , ARN Mensajero , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Yin-Yang
5.
J Biomech Eng ; 145(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695754

RESUMEN

Rigid interspinous process fixation (RIPF) has been recently discussed as an alternative to pedicle screw fixation (PSF) for reducing trauma in lumbar interbody fusion (LIF) surgery. This study aimed to investigate biomechanics of the lumbar spine with RIPF, and also to compare biomechanical differences between two postoperative stages (before and after bony fusion). Based on an intact finite-element model of lumbosacral spine, the models of single-level LIF with RIPF or conventional PSF were developed and were computed for biomechanical responses to the moments of four physiological motions using hybrid testing protocol. It was found that compared with PSF, range of motion (ROM), intradiscal pressure (IDP), and facet joint forces (FJF) at adjacent segments of the surgical level for RIPF were decreased by up to 8.4%, 2.3%, and 16.8%, respectively, but ROM and endplate stress at the surgical segment were increased by up to 285.3% and 174.3%, respectively. The results of comparison between lumbar spine with RIPF before and after bony fusion showed that ROM and endplate stress at the surgical segment were decreased by up to 62.6% and 40.4%, respectively, when achieved to bony fusion. These findings suggest that lumbar spine with RIPF as compared to PSF has potential to decrease the risk of adjacent segment degeneration but might have lower stability of surgical segment and an increased risk of cage subsidence; When achieved bony fusion, it might be helpful for the lumbar spine with RIPF in increasing stability of surgical segment and reducing failure of bone contact with cage.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Tornillos Pediculares/efectos adversos , Rango del Movimiento Articular/fisiología , Vértebras Lumbares/cirugía , Vértebras Lumbares/fisiología , Fenómenos Biomecánicos , Análisis de Elementos Finitos
6.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571657

RESUMEN

For enhanced energy concentration with improved flexibility for object manipulation, a focused acoustic vortex (FAV) is designed using a sector planar piston transducer array and acoustic lens that can produce the effective concentration of the acoustic field to perform the focusing function. Compared to the Gaussian beam, which tends to cause the object to deviate from the axis of acoustic propagation, FAVs can form a central valley region to firmly bind the objects, thus preventing off-target effects. The heat energy in the paraxial region is transferred to the vortex center in the form of heat transfer so that the temperature-sensitive liposomes captured can quickly release drugs, which has a good effect on targeted drug administration. The focused acoustic wave stopped acting on the tissue (gel) for 2 s, the temperature of the vortex center continued to rise, reaching 41.5 °C at the moment of 3.7 s, at which point the liposomes began to release the drug. The FAVs capture the drug and use its thermal effect to achieve accurate and rapid treatment. The simulation results show that the drug release temperature of temperature-sensitive liposomes can be achieved by controlling the action time of the vortices. This study provides a reliable theoretical basis for the clinical application of targeted drugs.


Asunto(s)
Acústica , Liposomas , Sonido , Simulación por Computador , Calor
7.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175203

RESUMEN

Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L-1 of selenite to elemental Se within 48 h at pH 4.5-6.0, a temperature of 30-40 °C, and a salinity of 1.0-6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (-26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15-120 µg mL-1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications.


Asunto(s)
Nanopartículas , Pediococcus acidilactici , Selenio , Selenio/química , Ácido Selenioso/química , Pediococcus acidilactici/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Nanopartículas/química
8.
Circulation ; 144(25): 2004-2020, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34797683

RESUMEN

BACKGROUND: Cardiac fibrosis is a lethal outcome of excessive formation of myofibroblasts that are scar-forming cells accumulated after heart injury. It has been reported that cardiac endothelial cells (ECs) contribute to a substantial portion of myofibroblasts through endothelial to mesenchymal transition (EndoMT). Recent lineage tracing studies demonstrate that myofibroblasts are derived from the expansion of resident fibroblasts rather than from the transdifferentiation of ECs. However, it remains unknown whether ECs can transdifferentiate into myofibroblasts reversibly or EndoMT genes were just transiently activated in ECs during cardiac fibrosis. METHODS: By using the dual recombination technology based on Cre-loxP and Dre-rox, we generated a genetic lineage tracing system for tracking EndoMT in cardiac ECs. We used it to examine if there is transiently activated mesenchymal gene expression in ECs during cardiac fibrosis. Activation of the broadly used marker gene in myofibroblasts, αSMA (α-smooth muscle actin), and the transcription factor that induces epithelial to mesenchymal transition, Zeb1 (zinc finger E-box-binding homeobox 1), was examined. RESULTS: The genetic system enables continuous tracing of transcriptional activity of targeted genes in vivo. Our genetic fate mapping results revealed that a subset of cardiac ECs transiently expressed αSMA and Zeb1 during embryonic valve formation and transdifferentiated into mesenchymal cells through EndoMT. Nonetheless, they did not contribute to myofibroblasts, nor transiently expressed αSMA or Zeb1 after heart injury. Instead, expression of αSMA was activated in resident fibroblasts during cardiac fibrosis. CONCLUSIONS: Mesenchymal gene expression is activated in cardiac ECs through EndoMT in the developing heart, but ECs do not transdifferentiate into myofibroblasts, nor transiently express some known mesenchymal genes during homeostasis and fibrosis in the adult heart. Resident fibroblasts that are converted to myofibroblasts by activating mesenchymal gene expression are the major contributors to cardiac fibrosis.


Asunto(s)
Células Endoteliales/metabolismo , Fibrosis/genética , Expresión Génica/genética , Miofibroblastos/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones
9.
Planta ; 256(6): 114, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370252

RESUMEN

MAIN CONCLUSION: Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis. Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.


Asunto(s)
Medicago sativa , Selenio , Animales , Medicago sativa/genética , Selenio/farmacología , Peróxido de Hidrógeno/metabolismo , Fotosíntesis , Antioxidantes/metabolismo , Mamíferos/metabolismo
10.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512484

RESUMEN

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Matriz Extracelular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos
11.
J Mater Sci Mater Med ; 33(6): 52, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35657438

RESUMEN

Under whole body vibration, how the cement augmentation affects the vibration characteristic of the osteoporotic fusion lumbar spine, complications, and fusion outcomes is unclear. A L1-L5 lumbar spine finite element model was developed to simulate a transforaminal lumbar interbody fusion (TLIF) model with bilateral pedicle screws at L4-L5 level, a polymethylmethacrylate (PMMA) cement-augmented TLIF model (TLIF-PMMA) and an osteoporotic TLIF model. A 40 N sinusoidal vertical load at 5 Hz and a 400 N preload were utilized to simulate a vertical vibration of the human body and the physiological compression caused by muscle contraction and the weight of human body. The results showed that PMMA cement augmentation may produce a stiffer pedicle screw/rod construct and decrease the risk of adjacent segment disease, subsidence, and rod failure under whole-body vibration(WBV). Cement augmentation might restore the disc height and segmental lordosis and decrease the risk of poor outcomes, but it might also increase the risk of cage failure and prolong the period of lumbar fusion under WBV. The findings may provide new insights for performing lumbar interbody fusion in patients affected by osteoporosis of the lumbar spine. Graphical abstract.


Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/cirugía , Polimetil Metacrilato , Fusión Vertebral/métodos , Vibración/uso terapéutico
12.
J Sci Food Agric ; 102(11): 4577-4588, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35170039

RESUMEN

BACKGROUND: Selenium (Se) is an increasing concern for investigators predominantly because of its consumption in the human body mainly from crops. As the fourth largest plant crop globally, alfalfa is one of the most important forages. Alfalfa was fertilized with selenium(IV) (Se(IV)) under field conditions to study the accumulation and assimilation of Se(IV) and to assess the impact of Se fertilization. RESULTS: It was analyzed that the physio-biochemistry, Se species, combined with transcriptome after spraying Se(IV) at different times (0, 12, and 48 h). 9402 and 12 607 differentially expressed genes (DEGs) were identified at 12 h (versus 0 h) and 48 h (versus 12 h). DEG functional enrichments proposed two time-specific biological processes: Se(IV) accumulation was the primary process at 0-12 h, and its assimilation mainly occurred during 12-48 h. This was further proved by the separation of various Se speciation at different times. It showed that Se-supplementation also affected the soluble protein, soluble sugar, pigment contents and antioxidant capacity. Selenium-biofortification could improve the stress resistance of alfalfa by enhancing antioxidant system to scavenge reactive oxygen species (e.g. hydrogen peroxide) and boosting carbohydrate metabolism. CONCLUSION: By integrating physio-biochemistry, Se-related metabolites, and transcriptome under Se(IV) treatment, this study provides data to guide further work on Se-fortification in alfalfa. © 2022 Society of Chemical Industry.


Asunto(s)
Medicago sativa , Selenio , Antioxidantes/metabolismo , Perfilación de la Expresión Génica , Humanos , Medicago sativa/genética , Medicago sativa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Selenio/metabolismo , Transcriptoma
13.
Circ Res ; 125(3): 343-355, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31185811

RESUMEN

RATIONALE: The developing heart is composed of cardiomyocytes and noncardiomyocytes since the early stage. It is generally believed that noncardiomyocytes including the cardiac progenitors contribute to new cardiomyocytes of the looping heart. However, it remains unclear what the cellular dynamics of nonmyocyte to cardiomyocyte conversion are and when the lineage segregation occurs during development. It also remains unknown whether nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. OBJECTIVE: We quantify the lineage conversion of noncardiomyocytes to cardiomyocytes in the embryonic and neonatal hearts and determine when the 2 cell lineages segregate during heart development. Moreover, we directly test if nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. METHODS AND RESULTS: We generated a dual genetic lineage tracing strategy in which cardiomyocytes and noncardiomyocytes of the developing heart could be simultaneously labeled by 2 orthogonal recombination systems. Genetic fate mapping showed that nonmyocyte to cardiomyocyte conversion peaks at E8.0 (embryonic day) to E8.5 and gradually declines at E9.5 and E10.5. Noncardiomyocytes do not generate any cardiomyocyte at and beyond E11.5 to E12.5. In the neonatal heart, noncardiomyocytes also do not contribute to any new cardiomyocyte in homeostasis or after injury. CONCLUSIONS: Noncardiomyocytes contribute to new cardiomyocytes of the developing heart at early embryonic stage before E11.5. The noncardiomyocyte and cardiomyocyte lineage segregation occurs between E10.5 and E11.5, which is maintained afterward even during neonatal heart regeneration.


Asunto(s)
Linaje de la Célula , Corazón Fetal/citología , Genes Reporteros , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Rastreo Celular , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Edad Gestacional , Corazón/embriología , Corazón/fisiología , Ratones , Ratones Transgénicos , Regeneración , Células Madre/clasificación , Células Madre/citología
14.
J Org Chem ; 86(12): 8236-8247, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34061530

RESUMEN

An unprecedented and expeditious tandem bisannulation of polyfluoroalkylated tetralones with benzamidines to access various fluoroalkyl tetracyclic [1,3]-diazepines through multiple C-N bond formation and C(sp3)-F bond cleavage is reported. The process features high regio-/chemoselectivities, broad substrate scope, good functional group tolerance, procedural simplicity, mild reaction conditions, and scale-up synthesis. Mechanistic studies showed that the distinctive fluorine effect of polyfluoroalkyl tetralone plays a vital role for the aza-tetracycle construction.


Asunto(s)
Flúor
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(5): 877-884, 2021 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-34713655

RESUMEN

The human spine injury and various lumbar spine diseases caused by vibration have attracted extensive attention at home and abroad. To explore the biomechanical characteristics of different approaches for lumbar interbody fusion surgery combined with an interspinous internal fixator, device for intervertebral assisted motion (DIAM), finite element models of anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF) and lateral lumbar interbody fusion (LLIF) are created by simulating clinical operation based on a three-dimensional finite element model of normal human whole lumbar spine. The fusion level is at L4-L5, and the DIAM is implanted between spinous process of L4 and L5. Transient dynamic analysis is conducted on the ALIF, TLIF and LLIF models, respectively, to compute and compare their stress responses to an axial cyclic load. The results show that compared with those in ALIF and TILF models, contact forces between endplate and cage are higher in LLIF model, where the von-Mises stress in endplate and DIAM is lower. This implies that the LLIF have a better biomechanical performance under vibration. After bony fusion between vertebrae, the endplate and DIAM stresses for all the three surgical models are decreased. It is expected that this study can provide references for selection of surgical approaches in the fusion surgery and vibration protection for the postsurgical lumbar spine.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/cirugía , Rango del Movimiento Articular , Vibración
16.
Stem Cells ; 37(7): 958-972, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932271

RESUMEN

Direct in vivo reprogramming of cardiac fibroblasts into myocytes is an attractive therapeutic intervention in resolving myogenic deterioration. Current transgene-dependent approaches can restore cardiac function, but dependence on retroviral delivery and persistent retention of transgenic sequences are significant therapeutic hurdles. Chemical reprogramming has been established as a legitimate method to generate functional cell types, including those of the cardiac lineage. Here, we have extended this approach to generate progenitor cells that can differentiate into endothelial cells and cardiomyocytes using a single inhibitor protocol. Depletion of terminally differentiated cells and enrichment for proliferative cells result in a second expandable progenitor population that can robustly give rise to myofibroblasts and smooth muscle. Deployment of a genome-wide knockout screen with clustered regularly interspaced short palindromic repeats-guide RNA library to identify novel mediators that regulate the reprogramming revealed the involvement of DNA methyltransferase 1-associated protein 1 (Dmap1). Loss of Dmap1 reduced promoter methylation, increased the expression of Nkx2-5, and enhanced the retention of self-renewal, although further differentiation is inhibited because of the sustained expression of Cdh1. Our results hence establish Dmap1 as a modulator of cardiac reprogramming and myocytic induction. Stem Cells 2019;37:958-972.


Asunto(s)
Benzamidas/farmacología , Sistemas CRISPR-Cas , Reprogramación Celular/efectos de los fármacos , Dioxoles/farmacología , Fibroblastos/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Proteínas Represoras/genética , Células Madre/efectos de los fármacos , Animales , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Edición Génica/métodos , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/citología , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Represoras/metabolismo , Células Madre/citología , Células Madre/metabolismo
17.
Arch Biochem Biophys ; 689: 108411, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32450066

RESUMEN

The process of ischemia/reperfusion (IR) in ischemic stroke often leads to significant cell death and permanent neuronal damage. Safe and effective treatments are urgently needed to mitigate the damage caused by IR injury. The naturally occurring pleiotropic peptide phoenixin 14 (PNX-14) has recently come to light as a potential treatment for IR injury. In the present study, we examined the effects of PNX-14 on several key processes involved in ischemic injury, such as pro-inflammatory cytokine expression, oxidative stress, and the related cascade mediated through the toll-like receptor 4 (TLR4) pathway, using BV2 microglia exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Our results demonstrate an acute ability of PNX-14 to regulate the expression levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). PNX-14 also prevented oxidative stress by reducing the generation of reactive oxygen species (ROS) and increasing the level of the antioxidant glutathione (GSH). Importantly, PNX-14 inhibited high-mobility group box 1 (HMGB1)/TLR4/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway, by inhibiting the activation of TLR4 and preventing the nuclear translocation of p65 protein. We further confirmed the cerebroprotective effects of PNX-14 in an MCAO rat model, which resulted in reduced infarct volume and decreased microglia activation. Together, the results of this study implicate a possible protective role of PNX-14 against various aspects of IR injury in vitro.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Hormonas Hipotalámicas/uso terapéutico , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Hormonas Peptídicas/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/patología , Línea Celular , Masculino , Microglía/patología , Ratas Sprague-Dawley , Daño por Reperfusión/patología
18.
Circ Res ; 123(1): 86-99, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29764841

RESUMEN

RATIONALE: Organs of the body require vascular networks to supply oxygen and nutrients and maintain physiological function. The blood vessels of different organs are structurally and functionally heterogeneous in nature. To more precisely dissect their distinct in vivo function in individual organs, without potential interference from off-site targets, it is necessary to genetically target them in an organ-specific manner. OBJECTIVE: The objective of this study was to generate a genetic system that targets vascular endothelial cells in an organ- or tissue-specific manner and to exemplify the potential application of intersectional genetics for precise, target-specific gene manipulation in vivo. METHODS AND RESULTS: We took advantage of 2 orthogonal recombination systems, Dre-rox and Cre-loxP, to create a genetic targeting system based on intersectional genetics. Using this approach, Cre activity was only detectable in cells that had expressed both Dre and Cre. Applying this new system, we generated a coronary endothelial cell-specific Cre (CoEC-Cre) and a brain endothelial cell-specific Cre (BEC-Cre). Through lineage tracing, gene knockout and overexpression experiments, we demonstrated that CoEC-Cre and BEC-Cre efficiently and specifically target blood vessels in the heart and brain, respectively. By deletion of vascular endothelial growth factor receptor 2 using BEC-Cre, we showed that vascular endothelial growth factor signaling regulates angiogenesis in the central nervous system and also controls the integrity of the blood-brain barrier. CONCLUSIONS: We provide 2 examples to illustrate the use of intersectional genetics for more precise gene targeting in vivo, namely manipulation of genes in blood vessels of the heart and brain. More broadly, this system provides a valuable strategy for tissue-specific gene manipulation that can be widely applied to other fields of biomedical research.


Asunto(s)
Vasos Sanguíneos , Encéfalo/irrigación sanguínea , Vasos Coronarios , Marcación de Gen/métodos , Animales , Barrera Hematoencefálica , Hipoxia de la Célula , Células Endoteliales , Técnicas de Inactivación de Genes , Hibridación in Situ/métodos , Ratones , Neovascularización Fisiológica , Especificidad de Órganos , Receptores de Factores de Crecimiento Endotelial Vascular/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
19.
Proc Natl Acad Sci U S A ; 114(40): E8372-E8381, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916735

RESUMEN

The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including ß-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both ß-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.


Asunto(s)
Factores Biológicos/metabolismo , Puntos de Control del Ciclo Celular , Miocitos Cardíacos/metabolismo , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Regeneración/fisiología , Adulto , Animales , Diferenciación Celular , Daño del ADN , Humanos , Masculino , Miocitos Cardíacos/citología , Organoides/citología , Células Madre Pluripotentes/citología , Ratas Sprague-Dawley
20.
J Mol Cell Cardiol ; 127: 204-214, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597148

RESUMEN

Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proliferación Celular , ADN/biosíntesis , Humanos , Procesamiento de Imagen Asistido por Computador , Fenotipo , Ploidias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA