Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 615(7954): 884-891, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922596

RESUMEN

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Asunto(s)
Señalización del Calcio , Calcio , Calmodulina , Neuronas , Óxido Nítrico Sintasa de Tipo III , Fragmentos de Péptidos , Calcio/análisis , Calcio/metabolismo , Calmodulina/metabolismo , Neuronas/metabolismo , Cinética , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factores de Tiempo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo
2.
Nature ; 605(7911): 722-727, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545673

RESUMEN

Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.


Asunto(s)
Células de Purkinje , Transcriptoma , Animales , Cerebelo , Aprendizaje/fisiología , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Neuronas/fisiología , Células de Purkinje/metabolismo , Transcriptoma/genética
3.
Nat Methods ; 19(4): 486-495, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379947

RESUMEN

The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Animales , Conducta Animal , Cabeza , Aprendizaje Automático , Ratones , Conducta Social
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876515

RESUMEN

Democracy often fails to meet its ideals, and these failures may be made worse by electoral institutions. Unwanted outcomes include elite polarization, unresponsive representatives, and the ability of a faction of voters to gain power at the expense of the majority. Various reforms have been proposed to address these problems, but their effectiveness is difficult to predict against a backdrop of complex interactions. Here we outline a path for systems-level modeling to help understand and optimize repairs to US democracy. Following the tradition of engineering and biology, models of systems include mechanisms with dynamical properties that include nonlinearities and amplification (voting rules), positive feedback mechanisms (single-party control, gerrymandering), negative feedback (checks and balances), integration over time (lifetime judicial appointments), and low dimensionality (polarization). To illustrate a systems-level approach, we analyze three emergent phenomena: low dimensionality, elite polarization, and antimajoritarianism in legislatures. In each case, long-standing rules now contribute to undesirable outcomes as a consequence of changes in the political environment. Theoretical understanding at a general level will also help evaluate whether a proposed reform's benefits will materialize and be lasting, especially as conditions change again. In this way, rigorous modeling may not only shape new lines of research but aid in the design of effective and lasting reform.

5.
Nat Methods ; 16(1): 117-125, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573820

RESUMEN

The need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network. LEAP offers fast prediction on new data, and training with as few as 100 frames results in 95% of peak performance. We validated LEAP using videos of freely behaving fruit flies and tracked 32 distinct points to describe the pose of the head, body, wings and legs, with an error rate of <3% of body length. We recapitulated reported findings on insect gait dynamics and demonstrated LEAP's applicability for unsupervised behavioral classification. Finally, we extended the method to more challenging imaging situations and videos of freely moving mice.


Asunto(s)
Conducta Animal , Aprendizaje Profundo , Drosophila melanogaster/fisiología , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Animales , Automatización , Gráficos por Computador , Marcha , Locomoción , Masculino , Ratones , Interfaz Usuario-Computador
6.
Nat Methods ; 16(2): 206, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30602783

RESUMEN

In the version of this paper originally published, important figure labels in Fig. 3d were not visible. An image layer present in the authors' original figure that included two small dashed outlines and text labels indicating ROI 1 and ROI 2, as well as a scale bar and the name of the cell label, was erroneously altered during image processing. The figure has been corrected in the HTML and PDF versions of the paper.

7.
Nat Methods ; 16(4): 351, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30820033

RESUMEN

The version of this paper originally published cited a preprint version of ref. 12 instead of the published version (Proc. Natl. Acad. Sci. USA 115, 5594-5599; 2018), which was available before this Nature Methods paper went to press. The reference information has been updated in the PDF and HTML versions of the article.

9.
Nat Methods ; 15(11): 936-939, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377363

RESUMEN

Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Neuronas/citología , Retina/citología , Corteza Visual/citología , Animales , Color , Femenino , Hurones , Colorantes Fluorescentes , Ácido Glutámico/análisis , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Retina/metabolismo , Corteza Visual/metabolismo
10.
J Neurosci ; 39(46): 9119-9129, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31582529

RESUMEN

Development of brain circuitry requires precise regulation and timing of proliferation and differentiation of neural progenitor cells. The p75 neurotrophin receptor (p75NTR) is highly expressed in the proliferating granule cell precursors (GCPs) during development of the cerebellum. In a previous paper, we showed that proNT3 promoted GCP cell cycle exit via p75NTR. Here we used genetically modified rats and mice of both sexes to show that p75NTR regulates the duration of the GCP cell cycle, requiring activation of RhoA. Rats and mice lacking p75NTR have dysregulated GCP proliferation, with deleterious effects on cerebellar circuit development and behavioral consequences persisting into adulthood. In the absence of p75NTR, the GCP cell cycle is accelerated, leading to delayed cell cycle exit, prolonged GCP proliferation, increased glutamatergic input to Purkinje cells, and a deficit in delay eyeblink conditioning, a cerebellum-dependent form of learning. These results demonstrate the necessity of appropriate developmental timing of the cell cycle for establishment of proper connectivity and associated behavior.SIGNIFICANCE STATEMENT The cerebellum has been shown to be involved in numerous behaviors in addition to its classic association with motor function. Cerebellar function is disrupted in a variety of psychiatric disorders, including those on the autism spectrum. Here we show that the p75 neurotrophin receptor, which is abundantly expressed in the proliferating cerebellar granule cell progenitors, regulates the cell cycle of these progenitors. In the absence of this receptor, the cell cycle is dysregulated, leading to excessive progenitor proliferation, which alters the balance of inputs to Purkinje cells, disrupting the circuitry and leading to functional deficits that persist into adulthood.


Asunto(s)
Ciclo Celular/fisiología , Cerebelo/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Receptores de Factor de Crecimiento Nervioso/fisiología , Animales , Proliferación Celular , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones Transgénicos , Proteínas del Tejido Nervioso , Células de Purkinje/fisiología , Células de Purkinje/ultraestructura , Ratas Transgénicas , Receptores de Factores de Crecimiento
12.
J Physiol ; 597(16): 4387-4406, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31297821

RESUMEN

KEY POINTS: Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms. ABSTRACT: The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca2+ ]o and [Mg2+ ]o concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/fisiología , Aprendizaje/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Fenómenos Electrofisiológicos , Ratones , Fibras Nerviosas/fisiología , Plasticidad Neuronal , Sinapsis/fisiología
13.
J Neurosci ; 34(47): 15679-88, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411496

RESUMEN

Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP-mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety.


Asunto(s)
Ansiedad/fisiopatología , Uniones Comunicantes/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Animales , Conducta Animal/fisiología , Conexinas/genética , Conexinas/fisiología , Electroencefalografía , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Carrera/psicología , Ritmo Teta/efectos de los fármacos , Proteína delta-6 de Union Comunicante
14.
J Am Chem Soc ; 136(5): 1976-81, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24422544

RESUMEN

Photoactivatable "caged" neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensity of caged GABAs to interact with GABA receptors. We describe herein the synthesis and application of a practically useful doubly caged GABA analog, termed bis-α-carboxy-2-nitrobenzyl-GABA (bis-CNB-GABA). Uncaging of bis-CNB-GABA evokes inward GABAergic currents in cerebellar molecular layer interneurons with rise times of 2 ms, comparable to flash duration. Response amplitudes depend on the square of flash intensity, as expected for a chemical two-photon uncaging effect. Importantly, prior to uncaging, bis-CNB-GABA is inactive at the GABAA receptor, evoking no changes in holding current in voltage-clamped neurons and showing an IC50 of at least 2.5 mM as measured using spontaneous GABAergic synaptic currents. Bis-CNB-GABA is stable in solution, with an estimated half-life of 98 days in the light. We expect that bis-CNB-GABA will prove to be an effective tool for high-resolution chemical control of brain circuits.


Asunto(s)
Neurotransmisores/síntesis química , Fenilacetatos/síntesis química , Fotones , Receptores de GABA/metabolismo , Ácido gamma-Aminobutírico/análogos & derivados , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Estabilidad de Medicamentos , Potenciales Evocados/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Estructura Molecular , Neurotransmisores/química , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Fenilacetatos/química , Fenilacetatos/farmacología , Procesos Fotoquímicos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/síntesis química , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/farmacología
15.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873112

RESUMEN

Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.

16.
J Neurosci ; 32(40): 13819-40, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035093

RESUMEN

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.


Asunto(s)
Señalización del Calcio , Colorantes Fluorescentes/química , Fluorometría/métodos , Proteínas Fluorescentes Verdes/química , Neuroimagen/métodos , Neuronas/química , Péptidos/química , Transmisión Sináptica , Animales , Astrocitos/química , Astrocitos/ultraestructura , Caenorhabditis elegans , Cristalografía por Rayos X , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Colorantes Fluorescentes/análisis , Genes Sintéticos , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Células HEK293/química , Células HEK293/ultraestructura , Hipocampo/química , Hipocampo/citología , Humanos , Larva , Rayos Láser , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Neuromuscular/química , Unión Neuromuscular/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Neurópilo/química , Neurópilo/fisiología , Neurópilo/ultraestructura , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Péptidos/análisis , Péptidos/genética , Estimulación Luminosa , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Células Bipolares de la Retina/química , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/ultraestructura , Pez Cebra/crecimiento & desarrollo
17.
J Neurophysiol ; 109(9): 2282-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23427305

RESUMEN

The deep cerebellar nuclei (DCN) convey the final output of the cerebellum and are a major site of activity-dependent plasticity. Here, using patch-clamp recording and two-photon calcium imaging in rat brain slices, we demonstrate that DCN dendrites exhibit three hallmarks of active amplification of electrical signals. First, they produce calcium transients with rise times of tens of milliseconds, comparable in amplitude and duration to calcium spikes in other neurons. Second, calcium signal amplitudes are undiminished along the length of dendrites to the farthest distances from the soma. Third, they can generate calcium signals even in the presence of tetrodotoxin, a sodium channel blocker that abolishes somatic action potential initiation. DCN calcium transients do require the action of T-type calcium channels, a common voltage-gated conductance in excitable dendrites. Dendritic calcium influx was evoked by release from hyperpolarization, peaked within tens of milliseconds, and was observed in both transient- and weak-rebound-firing neurons. In a survey across the DCN, transient-burst rebound firing, which was accompanied by the most rapid calcium flux, was more common in lateral nucleus than in interpositus nucleus and was not seen in medial nucleus. Rebound firing and calcium transients were not present in animals shipped 1-3 days before recording, a condition associated with elevated maternal and pup corticosterone and reduced pup body weight. Rebounds could be restored by the protein kinase C activator phorbol 12-myristate-13-acetate. Thus local calcium-based dendritic excitability supports a stage of presomatic amplification that is under regulation by stress and neuromodulatory influence.


Asunto(s)
Potenciales de Acción , Calcio/metabolismo , Núcleos Cerebelosos/fisiología , Dendritas/fisiología , Animales , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Núcleos Cerebelosos/citología , Núcleos Cerebelosos/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Ratas , Ratas Sprague-Dawley , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Tetrodotoxina/farmacología
18.
Bio Protoc ; 13(20): e4854, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37900100

RESUMEN

Whole-brain clearing and imaging methods are becoming more common in mice but have yet to become standard in rats, at least partially due to inadequate clearing from most available protocols. Here, we build on recent mouse-tissue clearing and light-sheet imaging methods and develop and adapt them to rats. We first used cleared rat brains to create an open-source, 3D rat atlas at 25 µm resolution. We then registered and imported other existing labeled volumes and made all of the code and data available for the community (https://github.com/emilyjanedennis/PRA) to further enable modern, whole-brain neuroscience in the rat. Key features • This protocol adapts iDISCO (Renier et al., 2014) and uDISCO (Pan et al., 2016) tissue-clearing techniques to consistently clear rat brains. • This protocol also decreases the number of working hours per day to fit in an 8 h workday. Graphical overview.

19.
Commun Biol ; 6(1): 605, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277453

RESUMEN

The cerebellum regulates nonmotor behavior, but the routes of influence are not well characterized. Here we report a necessary role for the posterior cerebellum in guiding a reversal learning task through a network of diencephalic and neocortical structures, and in flexibility of free behavior. After chemogenetic inhibition of lobule VI vermis or hemispheric crus I Purkinje cells, mice could learn a water Y-maze but were impaired in ability to reverse their initial choice. To map targets of perturbation, we imaged c-Fos activation in cleared whole brains using light-sheet microscopy. Reversal learning activated diencephalic and associative neocortical regions. Distinctive subsets of structures were altered by perturbation of lobule VI (including thalamus and habenula) and crus I (including hypothalamus and prelimbic/orbital cortex), and both perturbations influenced anterior cingulate and infralimbic cortex. To identify functional networks, we used correlated variation in c-Fos activation within each group. Lobule VI inactivation weakened within-thalamus correlations, while crus I inactivation divided neocortical activity into sensorimotor and associative subnetworks. In both groups, high-throughput automated analysis of whole-body movement revealed deficiencies in across-day behavioral habituation to an open-field environment. Taken together, these experiments reveal brainwide systems for cerebellar influence that affect multiple flexible responses.


Asunto(s)
Encéfalo , Cerebelo , Ratones , Animales , Cerebelo/fisiología , Corteza Cerebelosa , Células de Purkinje , Aprendizaje
20.
Proc Natl Acad Sci U S A ; 106(9): 3496-501, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19211787

RESUMEN

Multicellular glial calcium waves may locally regulate neural activity or brain energetics. Here, we report a diffusion-driven astrocytic signal in the normal, intact brain that spans many astrocytic processes in a confined volume without fully encompassing any one cell. By using 2-photon microscopy in rodent cerebellar cortex labeled with fluorescent indicator dyes or the calcium-sensor protein G-CaMP2, we discovered spontaneous calcium waves that filled approximately ellipsoidal domains of Bergmann glia processes. Waves spread in 3 dimensions at a speed of 4-11 microm/s to a diameter of approximately 50 microm, slowed during expansion, and were reversibly blocked by P2 receptor antagonists. Consistent with the hypothesis that ATP acts as a diffusible trigger of calcium release waves, local ejection of ATP triggered P2 receptor-mediated waves that were refractory to repeated activation. Transglial waves represent a means for purinergic signals to act with local specificity to modulate activity or energetics in local neural circuits.


Asunto(s)
Calcio/metabolismo , Cerebelo/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cerebelo/efectos de los fármacos , Ratones , Antagonistas del Receptor Purinérgico P2 , Ratas , Receptores Purinérgicos P2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA