Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 46, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459592

RESUMEN

Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Proteínas Oncogénicas Virales , Vacunas contra Papillomavirus , Vacunas de ADN , Animales , Ratones , Vacunación Basada en Ácidos Nucleicos , Vacunas de ADN/genética , Vacunas contra Papillomavirus/genética , Neoplasias/genética , Neoplasias/terapia , Linfocitos T CD8-positivos , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogénicas Virales/genética , Ratones Endogámicos C57BL , Microambiente Tumoral
2.
Opt Lett ; 49(6): 1628-1631, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489468

RESUMEN

A single-photon lidar based on multi-repetition-rate pulse train correlation and accumulation is proposed, and a ranging experiment is conducted on a 32 m target. By accumulating the correlation ranging results of pulse trains with internal spacings of 80, 100, and 125 ns, the signal-to-noise ratio of the cross correlation function is improved by about three-fold, which enables our method to improve the ranging precisions by more than 20% compared with the single repetition-rate method, and the shorter the acquisition time, the more obvious the advantage will be. Experimental results show that at an acquisition time of 0.01 s, our method can still achieve a ranging precision of 2.59 cm, while the single repetition-rate method can no longer obtain effective ranging results at this time. This method will be of great significance for realizing high-speed, large-scale unambiguous single-photon lidar ranging.

3.
BMC Cancer ; 24(1): 49, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195438

RESUMEN

BACKGROUND: Supraclavicular nodal (SCL) irradiation is commonly used for patients with high-risk breast cancer after breast surgery. The Radiation Therapy Oncology Group (RTOG) and European Society for Radiotherapy and Oncology (ESTRO) breast contouring atlases delineate the medial part of the SCL region, while excluding the posterolateral part. However, recent studies have found that a substantial proportion of SCL failures are located in the posterolateral SCL region, outside of the RTOG/ESTRO-defined SCL target volumes. Consequently, many radiation oncologists advocate for enlarging the SCL irradiation target volume to include both the medial and posterolateral SCL regions. Nevertheless, it remains uncertain whether adding the posterolateral SCL irradiation improves survival outcomes for high-risk breast cancer patients. METHODS: The SUCLANODE trial is an open-label, multicenter, randomized, phase 3 trial comparing the efficacy and adverse events of medial SCL irradiation (M-SCLI group) and medial plus posterolateral SCL irradiation (entire SCL irradiation, E-SCLI group) in high-risk breast cancer patients who underwent breast conserving-surgery or mastectomy. Patients with pathological N2-3b disease following initial surgery, or clinical stage III or pathological N1-3b if receiving neoadjuvant systemic therapy, are eligible and randomly assigned (1:1) to M-SCLI group and E-SCLI group. Stratification is by chemotherapy sequence (neoadjuvant vs. adjuvant), T stage (T3-4 vs. T1-2), N stage (N1-2 vs. N3), and ER status (positive vs. negative). Other radiation volumes are identical in the two arms, including breast/chest wall, undissected axillary lymph node, and internal mammary node. Advanced intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), or tomotherapy techniques are recommended. Both hypofractionated and conventional fractionation schedules are permitted. The primary end point is invasive disease-free survival, and secondary end points included overall survival, SCL recurrence, local-regional recurrence, distance recurrence, safety outcome, and patient-reported outcomes. The target sample size is 1650 participants. DISCUSSION: The results of the SUCLANODE trial will provide high-level evidence regarding whether adding posterolateral SCL irradiation to medial SCL target volume provides survival benefit in patients with high-risk breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05059379. Registered 28 September 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT05059379 .


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Mastectomía , Adyuvantes Inmunológicos , Ganglios Linfáticos , Mama , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como Asunto
4.
Neurochem Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834846

RESUMEN

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.

5.
Crit Rev Immunol ; 43(6): 15-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943150

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory decline and cognitive impairment, which is related to hallmark protein aggregates, amyloid-ß (Аß) plaques and neurofibrillary tangles; the latter are accumulated with hyperphosphorylated Tau protein. Immune cells play an important role in AD pathogenesis. Although the role of T cells in AD remains controversial, studies have shown that T cell deficiency is associated with increased AD pathology. In contrast, transplantation of T cells reduces AD pathology. T cells can help B cells generate anti-Ðß antibody to neutralize the toxin of Ðß and hyperphosphorylated Tau. T cells also activate macrophages to phagocytose misfolded proteins including Ðß and Tau. Recent data have also shown that AD animals have a damaged thymic microenvironment, especially thymic epithelial cells (TECs), resulting in decreased T cell numbers, which contribute to AD pathology. Therefore, regulation of T cell regeneration, for example by rejuvenating the thymic microenvironment, has the potential to be used in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Enfermedad de Alzheimer/etiología , Linfocitos T , Timo , Linfocitos B , Células Epiteliales
6.
J Immunol ; 208(4): 861-869, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35046104

RESUMEN

The IL-36 family, including IL-36α, IL-36ß, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.


Asunto(s)
Concanavalina A/efectos adversos , Hepatitis/etiología , Hepatitis/metabolismo , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hepatitis/diagnóstico , Inmunofenotipificación , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Receptores de Interleucina-1/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
7.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189618

RESUMEN

The sluggish oxygen evolution reaction (OER) in overall electrocatalytic water splitting poses a significant challenge in hydrogen production. A series of transition metal phosphides are emerging as promising electrocatalysts, effectively modulating the charge distribution of surrounding atoms for OER. In this study, a highly efficient OER electrocatalyst (CoP-CNR-CNT) was successfully synthesized through the pyrolysis and phosphatization of a Co-doped In-based coordination polymer, specifically InOF-25. This process resulted in evenly dispersed CoP nanoparticles encapsulated in coordination polymer-derived carbon nanoribbons. The synthesized CoP-CNR-CNT demonstrated a competitive OER activity with a smaller overpotential (η10) of 295.7 mV at 10 mA cm-2 and a satisfactory long-term stability compared to the state-of-the-art RuO2 (η10 = 353.7 mV). The high OER activity and stability can be attributed to the high conductivity of the carbon network, the abundance of CoP particles, and the intricate nanostructure of nanoribbons/nanotubes. This work provides valuable insights into the rational design and facile preparation of efficient non-precious metal-based OER electrocatalysts from inorganic-organic coordination polymers, with potential applications in various energy conversion and storage systems.

8.
BMC Ophthalmol ; 24(1): 235, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840075

RESUMEN

AIMS: To explore the application and long-term clinical effects of modified Yamane technique in intrascleral intraocular lens (IOL) fixation combined with or without iris reconstruction. SETTINGS AND DESIGN: The data of patients receiving IOL fixation with modified Yamane technique in an ophthalmology department between December 2021 and August 2023 were analyzed retrospectively. The longest follow-up duration was > 12 months. METHODS AND MATERIAL: The trailing haptic was fixed with the needle before the leading haptic. The silicone haptic stoppers were used to stabilize the IOL when iris reconstruction was combined. Preoperative and postoperative best-corrected visual acuity (BCVA), corneal endothelial cells (CECs), postoperative intraocular pressure (IOP), surgical indications and methods, and postoperative complications were recorded. Anterior segment optical coherence tomography (OCT) was used to evaluate IOL decentration and tilt. The paired sample t-test or Wilcoxon rank sum test were used to compare the results of the same index before and after the operation. RESULTS: Twelve patients (12 eyes) were included in this cohort. There were 1 case of IOL dislocation, eight cases of lens dislocation or subluxation, and three cases of aphakia. Traumatic lens dislocation was the main cause of aphakia. Primary lens extraction was performed in previous surgeries, and all three were combined with pars plana vitrectomy (PPV). Four of 12 patients underwent IOL fixation and iris reconstruction. The mean age of participants was 63 ± 10.61 years. The mean BCVA increased from 0.89 ± 0.72 logMAR to 0.39 ± 0.56 logMAR at the last visit (p < 0.05). The postoperative relative refractive error was - 0.13 ± 0.42 D (-0.60 D to + 0.57 D). The OCT showed that the IOLs were well centered, with a mean decentration of 0.20 ± 0.13 mm and a mean tilt of 2.31°±0.93°. Ten patients did not experience any complications. CONCLUSIONS: The modified Yamane technique in IOL fixation surgery, especially combined with iris reconstruction, reduces operation difficulty, increases operational stability and safety, and improves postoperative visual acuity without serious intra- or postoperative complications. The long-term improvement effect was remarkable.


Asunto(s)
Iris , Implantación de Lentes Intraoculares , Lentes Intraoculares , Esclerótica , Agudeza Visual , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Implantación de Lentes Intraoculares/métodos , Iris/cirugía , Anciano , Agudeza Visual/fisiología , Esclerótica/cirugía , Procedimientos de Cirugía Plástica/métodos , Tomografía de Coherencia Óptica/métodos , Estudios de Seguimiento
9.
Metab Brain Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801506

RESUMEN

Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3ß at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3ß pathway.

10.
Pestic Biochem Physiol ; 198: 105702, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225060

RESUMEN

As an efficient triazole fungicide, prothioconazole (PTC) is widely used for the prevention and control of plant fungal pathogens. It was reported that the residues of PTC and prothioconazole-desthio (PTC-d) have been detected in the environment and crops, and the effects of PTC-d may be higher than that of PTC. Currently, PTC and PTC-d have been proven to induce hepatic metabolic disorders. However, their toxic effects on cellular bile acid (BA) and glucolipid metabolism remain unknown. In this study, HepG2 cells were exposed to 1-500 µM of PTC or PTC-d. High concentrations of PTC and PTC-d were found to induce cytotoxicity; thus, subsequent experimental exposure was conducted at concentrations of 10-50 µM. The expression levels of CYP7A1 and TG synthesis-related genes and levels of TG and total BA were observed to increase in HepG2 cells. Molecular docking analysis revealed direct interactions between PTC or PTC-d and CYP7A1 protein. To further investigate the underlying mechanisms, PTC and PTC-d were treated to HepG2 cells in which CYP7A1 expression was knocked down using siCYP7A1. It was observed that PTC and PTC-d affected the BA metabolism process and regulated the glycolipid metabolism process by promoting the expression of CYP7A1. In summary, we comprehensively analyzed the effects and mechanisms of PTC and PTC-d on cellular metabolism in HepG2 cells, providing theoretical data for evaluating the safety and potential risks associated with these substances.


Asunto(s)
Triazoles , Humanos , Regulación hacia Arriba , Células Hep G2 , Simulación del Acoplamiento Molecular , Triazoles/toxicidad , Triazoles/química
11.
Chem Biodivers ; 21(2): e202301706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38079052

RESUMEN

Based on the one strain many compounds strategy, a new brominated isocoumarin, 5-bromo-6,8-dihydroxy-3,7-dimethylisocoumarin (1), along with four new natural products, methyl 3-bromo-2,4-dihydroxy-6-methylbenzoate (2), methyl 2-bromo-4,6-dihydroxybenzoate (3), (E)-3-(3-bromo-4-hydroxyphenyl) acrylic acid (4) and 4-hydroxy-3-methyl-6-phenyl-2H-pyran-2-one (5), and four known compounds, methyl orsellinate (6), 4-hydroxy-3-methyl-6-(1-methyl-1-propenyl)-2H-pyran-2-one (7), pilobolusate (8) and cis-ferulic acid (9), were isolated from the ethyl acetate extract of the fungus Aspergillus sp. WXF1904 under the condition of adding bromine salt to the production medium. The structures of the new compounds were established by analysis of NMR and MS data. Compounds (1-9) were evaluated for inhibitory activity of acetylcholinesterase and pancreatic lipase, the new compound 1, known compounds 6 and 7 displayed weak inhibitory activity against acetylcholinesterase, compounds 2, 5, 7 and 8 showed weak inhibitory activity against pancreatic lipase.


Asunto(s)
Acetilcolinesterasa , Isocumarinas , Aspergillus/química , Hongos , Isocumarinas/química , Lipasa , Estructura Molecular , Benzoatos/química
12.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928419

RESUMEN

Lignin is a crucial substance in the formation of the secondary cell wall in plants. It is widely distributed in various plant tissues and plays a significant role in various biological processes. However, the number of copies, characteristics, and expression patterns of genes involved in lignin biosynthesis in maize are not fully understood. In this study, bioinformatic analysis and gene expression analysis were used to discover the lignin synthetic genes, and two representative maize inbred lines were used for stem strength phenotypic analysis and gene identification. Finally, 10 gene families harboring 117 related genes involved in the lignin synthesis pathway were retrieved in the maize genome. These genes have a high number of copies and are typically clustered on chromosomes. By examining the lignin content of stems and the expression patterns of stem-specific genes in two representative maize inbred lines, we identified three potential stem lodging resistance genes and their interactions with transcription factors. This study provides a foundation for further research on the regulation of lignin biosynthesis and maize lodging resistance genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lignina , Zea mays , Zea mays/genética , Zea mays/metabolismo , Lignina/biosíntesis , Lignina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Genes de Plantas , Perfilación de la Expresión Génica/métodos , Pared Celular/metabolismo , Pared Celular/genética , Estudio de Asociación del Genoma Completo , Fenotipo
13.
J Environ Manage ; 351: 119850, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141346

RESUMEN

Alpine meadows constitute one of the major ecosystems on the Qinghai-Tibetan Plateau, with livestock grazing exerting a considerable impact on their biodiversity. However, the degree to which plant diversity influences community stability under different grazing intensities remains unclear in this region. This study conducted controlled grazing experiments across four levels of grazing intensity (no-, low-, medium-, and high-grazing) based on herbage utilization rate to assess the influence of grazing intensities on plant community structure and diversity-stability relationships. We discovered that high-grazing reduced plant diversity and attenuated the temporal stability and resistance of above-ground biomass. No- and low-grazing could alleviate plant biomass loss, with community resistance being optimal under low-grazing. The direct effects of livestock grazing on temporal stability were found to be negligible. Plant characteristics and diversity accounted for a substantial proportion of livestock grazing effects on community resistance (R2 = 0.46), as revealed by piecewise structural equation model analysis. The presence of plant diversity enhances the resistance of alpine meadows against disturbance and accelerates the recovery after grazing. Our results suggest that low-grazing intensity may represent a judicious option for preserving species diversity and community stability on the Qinghai-Tibetan Plateau.


Asunto(s)
Ecosistema , Ganado , Animales , Pradera , Biodiversidad , Biomasa , Plantas
14.
J Sci Food Agric ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523343

RESUMEN

BACKGROUND: Optimizing biochar application is vital for enhancing crop production and ensuring sustainable agricultural production. A 3-year field experiment was established to explore the effects of varying the biochar application rate (BAR) on crop growth, quality, productivity and yields. BAR was set at 0, 10, 50 and 100 t ha-1 in 2018; 0, 10, 25, 50 and 100 t ha-1 in 2019; and 0, 10, 25 and 30 t ha-1 in 2020. Crop quality and growth status and production were evaluated using the dynamic technique for order preference by similarity to ideal solution with the entropy weighted method (DTOPSIS-EW), principal component analysis (PCA), membership function analysis (MFA), gray relation analysis (GRA) and the fuzzy Borda combination evaluation method. RESULTS: Low-dose BAR (≤ 25 t ha-1 for cotton; ≤ 50 t ha-1 for sugar beet) effectively increased biomass, plant height, leaf area index (LAI), water and fertility (N, P and K) productivities, and yield. Biochar application increased the salt absorption and sugar content in sugar beet, with the most notable increases being 116.45% and 20.35%, respectively. Conversely, BAR had no significant effect on cotton fiber quality. The GRA method was the most appropriate for assessing crop growth and quality. The most indicative parameters for reflecting cotton and sugarbeet growth and quality status were biomass and LAI. The 10 t ha-1 BAR consistently produced the highest scores and was the most economically viable option, as evaluated by DTOPSIS-EW. CONCLUSION: The optimal biochar application strategy for improving cotton and sugar beet cultivation in Xinjiang, China, is 10 t ha-1 biochar applied continuously. © 2024 Society of Chemical Industry.

15.
Health Care Women Int ; : 1-15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38237030

RESUMEN

Researchers in this study assesses risk behaviors for sexually transmitted infections (STIs) among sexual minority women (SMW) in Beijing, China. A total of 1,631 SMW participated in the study. Compared with women who have sex with women exclusively, women who have sex with both women and men reported more sex partners, more likely sharing sex toys, experiencing STI infections. Digital-genital sex, using sex toys, G-spot stimulation is associated with STI symptoms. SMW in Beijing engaged in high-risk sexual behaviors that may cause substantial risk for STIs. SMW and healthcare providers should be informed and STI testing should be promoted among SMW.

16.
Angew Chem Int Ed Engl ; : e202409986, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923276

RESUMEN

The utilization of hybrid aqueous electrolytes has significantly broadened the electrochemical and temperature ranges of aqueous batteries, such as aqueous zinc and lithium-ion batteries, but the design principles for extreme operating conditions remain poorly understood. Here, we systematically unveil the ternary interaction involving salt-water-organic co-solvents and its intricate impacts on both the atomic-level and macroscopic structural features of the hybrid electrolytes. This highlights a distinct category of micelle-like structure electrolytes featuring organic-enriched phases and nanosized aqueous electrolyte aggregates, enabled by appropriate low donor number co-solvents and amphiphilic anions. Remarkably, the electrolyte enables exceptional high solubility, accommodating up to 29.8 m zinc triflate within aqueous micelles. This configuration maintains an intra-micellar salt-in-water setup, allowing for a broad electrochemical window (up to 3.86 V), low viscosity, and state-of-the-art ultralow-temperature zinc ion conductivity (1.58 mS cm-1 at -80°C). Building upon the unique nature of the inhomogeneous localized aggregates, this micelle-like electrolyte facilitates dendrite-free Zn plating/stripping, even at -80°C. The assembled Zn||PANI battery showcases an impressive capacity of 71.8 mAh g-1 and an extended lifespan of over 3000 cycles at -80°C. This study opens up a promising approach in electrolyte design that transcends conventional local atomic solvation structures, broadening the water-in-salt electrolyte concept.

17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 639-645, 2024 Jun 15.
Artículo en Zh | MEDLINE | ID: mdl-38926382

RESUMEN

OBJECTIVES: To explore the effects of iris xanthin on airway inflammation, airway remodeling, and the high mobility group box 1 protein (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in asthmatic young mice. METHODS: Sixty male BALB/c young mice were randomly assigned into six groups: a blank group, a model group, a dexamethasone group, and low, medium, and high dose groups of iris xanthin, with ten mice per group. Asthma models were induced through intraperitoneal injections of a sensitizing agent [ovalbumin (OVA) 20 µg + aluminum hydroxide gel 2 mg], followed by 4% OVA aerosol inhalation. Lung function was measured using a pulmonary function tester to determine lung volume (LV), resting ventilation per minute (VE), and airway reactivity (Penh value). Hematoxylin-eosin (HE) staining was employed to examine and analyze airway remodeling. The contents of interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α) in bronchoalveolar lavage fluid were quantified using ELISA. Real-time fluorescence quantitative polymerase chain reaction and Western blot analysis were used to assess the expression of HMGB1/TLR4/NF-κB pathway-related mRNA and proteins in lung tissues. RESULTS: Compared to the model group, the dexamethasone and iris xanthin-treated groups (low, medium, and high doses) exhibited significant increases in LV and VE (P<0.05), with incremental dose-dependent increases observed in the iris xanthin groups. Additionally, Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, and NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were all reduced (P<0.05) in a dose-dependent manner. When compared to the dexamethasone group, the low and medium dose iris xanthin groups showed decreases in LV and VE (P<0.05), whereas Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were increased (P<0.05). No significant differences were noted in these indices between the high dose iris xanthin group and the dexamethasone group (P>0.05). CONCLUSIONS: Iris xanthin can effectively alleviates airway inflammation and inhibits airway remodeling in asthmatic young mice, possibly through the suppression of the HMGB1/TLR4/NF-κB pathway.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Proteína HMGB1 , Ratones Endogámicos BALB C , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/tratamiento farmacológico , Asma/metabolismo , Masculino , Ratones , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
18.
J Cell Mol Med ; 27(12): 1682-1696, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37154878

RESUMEN

Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.


Asunto(s)
Leucemia Mieloide Aguda , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor , Humanos , Apoptosis , Autofagia , Diferenciación Celular , Línea Celular Tumoral , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ARN Interferente Pequeño/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
19.
J Transl Med ; 21(1): 747, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875930

RESUMEN

BACKGROUND: The pathogenesis of Parkinson's disease (PD) has not been fully elucidated, and there are no effective disease-modifying drugs for the treatment of PD. Mesenchymal stem cells have been used to treat several diseases, but are not readily available. METHODS: Here, we used phenotypically uniform trophoblast stage-derived mesenchymal stem cells (T-MSCs) from embryonic stem cells, which are capable of stable production, and their exosomes (T-MSCs-Exo) to explore the molecular mechanisms involved in dopaminergic (DA) neuron protection in PD models using experimental assays (e.g., western blotting, immunofluorescence and immunohistochemistry staining). RESULTS: We assessed the levels of DA neuron injury and oxidative stress in MPTP-induced PD mice and MPP+-induced MN9D cells after treating them with T-MSCs or T-MSCs-Exo. Furthermore, T-MSCs-Exo miRNA sequencing analysis revealed that miR-100-5p-enriched T-MSCs-Exo directly targeted the 3' UTR of NOX4, which could protect against the loss of DA neurons, maintain nigro-striatal system function, ameliorate motor deficits, and reduce oxidative stress via the Nox4-ROS-Nrf2 axis in PD models. CONCLUSIONS: The study suggests that miR-100-5p-enriched T-MSCs-Exo may be a promising biological agent for the treatment of PD. Schematic summary of the mechanism underlying the neuroprotective actions of T-MSCs-Exo in PD. T-MSCs Exo may inhibit the expression level of the target gene NOX4 by delivering miR-100-5p, thereby reducing ROS production and alleviating oxidative stress via the Nox4-ROS-Nrf2 axis, thus improving DA neuron damage in PD.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Enfermedad de Parkinson , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Exosomas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Células Madre Mesenquimatosas/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo
20.
J Transl Med ; 21(1): 309, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149661

RESUMEN

BACKGROUND: The previous studies have revealed that abnormal RNA-binding protein Musashi-2 (MSI2) expression is associated with cancer progression through post-transcriptional mechanisms, however mechanistic details of this regulation in acute myeloid leukemia (AML) still remain unclear. Our study aimed to explore the relationship between microRNA-143 (miR-143) and MSI2 and to clarify their clinical significance, biological function and mechanism. METHODS: Abnormal expression of miR-143 and MSI2 were evaluated in bone marrow samples from AML patients by quantitative real time-PCR. Effects of miR-143 on regulating MSI2 expression were investigated using luciferase reporter assay. Functional roles of MSI2 and miR-143 on AML cell proliferation and migration were determined by CCK-8 assay, colony formation, and transwell assays in vitro and in mouse subcutaneous xenograft and orthotopic transplantation models in vivo. RNA immunoprecipitation, RNA stability measurement and Western blotting were performed to assess the effects of MSI2 on AML. RESULTS: We found that MSI2 was significantly overexpressed in AML and exerted its role of promoting AML cell growth by targeting DLL1 and thereby activating Notch signaling pathway. Moreover, we found that MSI2 bound to Snail1 transcript and inhibited its degradation, which in turn upregulated the expression of matrix metalloproteinases. We also found that MSI2 targeting miR-143 is downregulated in AML. In the AML xenograft mouse model, overexpression of MSI2 recapitulated its leukemia-promoting effects, and overexpression of miR-143 partially attenuated tumor growth and prevented metastasis. Notably, low expression of miR-143, and high expression of MSI2 were associated with poor prognosis in AML patients. CONCLUSIONS: Our data demonstrate that MSI2 exerts its malignant properties via DLL1/Notch1 cascade and the Snail1/MMPs axes in AML, and upregulation of miR-143 may be a potential therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Humanos , Animales , Ratones , Leucemia Mieloide Aguda/patología , Genes Supresores de Tumor , Proliferación Celular/genética , Regulación hacia Arriba , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA