Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 534(7608): 494-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27281198

RESUMEN

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Venenos de Araña/farmacología , Estrés Mecánico , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Sensoriales/citología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Masculino , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/química , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Oocitos/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Arañas/química , Especificidad por Sustrato/efectos de los fármacos , Temperatura
2.
J Allergy Clin Immunol ; 140(2): 454-464.e2, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28232084

RESUMEN

BACKGROUND: Despite recent insights into the pathophysiology of acute and chronic itch, chronic itch remains an often intractable condition. Among major contributors to chronic itch is dysfunction of spinal cord gamma aminobutyric acidergic (GABAergic) inhibitory controls. OBJECTIVES: We sought to test the hypothesis that selective GABA agonists as well as cell transplant-derived GABA are antipruritic against acute itch and in a transgenic mouse model of atopic dermatitis produced by overexpression of the TH2 cell-associated cytokine, IL-31 (IL-31Tg mice). METHODS: We injected wild-type and IL-31Tg mice with combinations of GABA-A (muscimol) or GABA-B (baclofen) receptor agonists 15 to 20 minutes prior to injection of various pruritogens (histamine, chloroquine, or endothelin-1) and recorded spontaneous scratching before and after drug administration. We also tested the antipruritic properties of intraspinal transplantation of precursors of GABAergic interneurons in the IL-31Tg mice. RESULTS: Systemic muscimol or baclofen are antipruritic against both histamine-dependent and -independent pruritogens, but the therapeutic window using either ligand alone was very small. In contrast, combined subthreshold doses of baclofen and muscimol produced a significant synergistic antipruritic effect, with no sedation. Finally, transplant-mediated long-term enhancement of GABAergic signaling not only reduced spontaneous scratching in the IL-31Tg mice but also dramatically resolved the associated skin lesions. CONCLUSIONS: Although additional research is clearly needed, existing approved GABA agonists should be considered in the management of chronic itch, notably atopic dermatitis.


Asunto(s)
Antipruriginosos/uso terapéutico , Baclofeno/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Agonistas de Receptores de GABA-A/uso terapéutico , Agonistas de Receptores GABA-B/uso terapéutico , Muscimol/uso terapéutico , Animales , Dermatitis Atópica/metabolismo , Dermatitis Atópica/terapia , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Péptido Liberador de Gastrina/genética , Glutamato Descarboxilasa/genética , Interleucinas/genética , Interneuronas/efectos de los fármacos , Masculino , Eminencia Media/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Receptores de Bombesina/genética , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Receptores de Neuroquinina-1/genética , Piel/efectos de los fármacos , Piel/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Trasplante de Células Madre
3.
J Neurosci ; 36(46): 11634-11645, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852772

RESUMEN

Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT: Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.


Asunto(s)
Neuronas GABAérgicas/patología , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Células-Madre Neurales/trasplante , Regeneración de la Medula Espinal/fisiología , Médula Espinal/fisiología , Sinapsis/patología , Animales , Neuronas GABAérgicas/metabolismo , Hiperalgesia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Prosencéfalo/citología , Trasplante de Células Madre/métodos , Sinapsis/metabolismo , Resultado del Tratamiento
4.
Nature ; 462(7273): 651-5, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19915548

RESUMEN

Mechanical pain contributes to the morbidity associated with inflammation and trauma, but primary sensory neurons that convey the sensation of acute and persistent mechanical pain have not been identified. Dorsal root ganglion (DRG) neurons transmit sensory information to the spinal cord using the excitatory transmitter glutamate, a process that depends on glutamate transport into synaptic vesicles for regulated exocytotic release. Here we report that a small subset of cells in the DRG expresses the low abundance vesicular glutamate transporter VGLUT3 (also known as SLC17A8). In the dorsal horn of the spinal cord, these afferents project to lamina I and the innermost layer of lamina II, which has previously been implicated in persistent pain caused by injury. Because the different VGLUT isoforms generally have a non-redundant pattern of expression, we used Vglut3 knockout mice to assess the role of VGLUT3(+) primary afferents in the behavioural response to somatosensory input. The loss of VGLUT3 specifically impairs mechanical pain sensation, and in particular the mechanical hypersensitivity to normally innocuous stimuli that accompanies inflammation, nerve injury and trauma. Direct recording from VGLUT3(+) neurons in the DRG further identifies them as a poorly understood population of unmyelinated, low threshold mechanoreceptors (C-LTMRs). The analysis of Vglut3(-/-) mice now indicates a critical role for C-LTMRs in the mechanical hypersensitivity caused by injury.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ganglios Espinales/metabolismo , Hipersensibilidad/genética , Hipersensibilidad/fisiopatología , Mecanorreceptores/fisiología , Dolor/genética , Heridas y Lesiones/fisiopatología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Conducta Animal/fisiología , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Allergy Clin Immunol ; 133(2): 448-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24373353

RESUMEN

BACKGROUND: Although the cytokine IL-31 has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear. OBJECTIVE: We sought to determine whether immune cell-derived IL-31 directly stimulates sensory neurons and to identify the molecular basis of IL-31-induced itch. METHODS: We used immunohistochemistry and quantitative real-time PCR to determine IL-31 expression levels in mice and human subjects. Immunohistochemistry, immunofluorescence, quantitative real-time PCR, in vivo pharmacology, Western blotting, single-cell calcium imaging, and electrophysiology were used to examine the distribution, functionality, and cellular basis of the neuronal IL-31 receptor α in mice and human subjects. RESULTS: Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and, to a significantly lesser extent, mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentrations increased significantly in murine atopy-like dermatitis skin. Both human and mouse dorsal root ganglia neurons express IL-31RA, largely in neurons that coexpress transient receptor potential cation channel vanilloid subtype 1 (TRPV1). IL-31-induced itch was significantly reduced in TRPV1-deficient and transient receptor channel potential cation channel ankyrin subtype 1 (TRPA1)-deficient mice but not in c-kit or proteinase-activated receptor 2 mice. In cultured primary sensory neurons IL-31 triggered Ca(2+) release and extracellular signal-regulated kinase 1/2 phosphorylation, inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo. CONCLUSION: IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA(+)/TRPV1(+)/TRPA1(+) neurons and is a critical neuroimmune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus targeting neuronal IL-31RA might be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T-cell lymphoma.


Asunto(s)
Interleucinas/inmunología , Prurito/inmunología , Receptores de Interleucina/inmunología , Células Th2/inmunología , Animales , Canales de Calcio/inmunología , Células Cultivadas , Femenino , Ganglios Espinales/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/inmunología , Receptores de Interleucina/genética , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/inmunología , Canales de Potencial de Receptor Transitorio/inmunología
6.
Proc Natl Acad Sci U S A ; 107(51): 22296-301, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21135246

RESUMEN

Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. We report that conditional knockout (cKO) of the Slc17a6 gene encoding VGLUT2 from the great majority of nociceptors profoundly decreased VGLUT2 mRNA and protein in these neurons, and reduced firing of lamina I spinal cord neurons in response to noxious heat and mechanical stimulation. In behavioral assays, cKO mice showed decreased responsiveness to acute noxious heat, mechanical, and chemical (capsaicin) stimuli, but responded normally to cold stimulation and in the formalin test. Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.


Asunto(s)
Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Calor , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Animales , Conducta Animal/efectos de los fármacos , Capsaicina/farmacología , Frío , Fijadores/farmacología , Formaldehído/farmacología , Hiperalgesia/genética , Ratones , Ratones Noqueados , Dolor/genética , Fármacos del Sistema Sensorial/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/genética
7.
Neuron ; 110(22): 3711-3726.e16, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36087583

RESUMEN

Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , NAD/metabolismo , Neuroprotección , Proteínas del Citoesqueleto/metabolismo , Axones/metabolismo , Hidrolasas/metabolismo
8.
J Neurosci ; 29(17): 5508-15, 2009 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-19403818

RESUMEN

Activation of primary afferent nociceptors produces acute, short-lived pain, and tissue or nerve injury induces long-term enhancement of nociceptive processing, manifested as hypersensitivity to thermal and mechanical stimulation. Here we used a chemical-genetic and pharmacological approach to study the contribution of the receptor tyrosine kinase, type 2 (TrkB) to the generation and maintenance of injury-induced persistent pain. We performed the studies in wild-type mice and transgenic (TrkB(F616A)) mice that express mutant but fully functional TrkB receptors. By injecting a small molecule derivative of the protein kinase inhibitor protein phosphatase 1 (1NM-PP1), it is possible to produce highly selective inhibition of TrkB autophosphorylation in adult mice, without interfering with the activity of other protein kinases. We report that oral administration of 1NM-PP1, at doses that blocked phosphorylation of TrkB in the spinal cord, had no effect in behavioral tests of acute heat, mechanical, or chemical pain sensitivity. However, the same pretreatment with 1NM-PP1 prevented the development of tissue- or nerve injury-induced heat and mechanical hypersensitivity. Established hypersensitivity was transiently reversed by intraperitoneal injection of 1NM-PP1. Although interfering with TrkB signaling altered neither acute capsaicin nor formalin-induced pain behavior, the prolonged mechanical hypersensitivity produced by these chemical injuries was prevented by 1NM-PP1 inhibition of TrkB signaling. We conclude that TrkB signaling is not only an important contributor to the induction of heat and mechanical hypersensitivity produced by tissue or nerve injury but also to the persistence of the pain.


Asunto(s)
Neuralgia/metabolismo , Receptor trkB/biosíntesis , Transducción de Señal/fisiología , Animales , Enfermedad Crónica , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuralgia/genética , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Pirazoles/farmacología , Pirimidinas/farmacología , Receptor trkB/antagonistas & inhibidores , Receptor trkB/genética , Transducción de Señal/efectos de los fármacos , Estimulación Química
9.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31122949

RESUMEN

Reelin (Reln) and Disabled-1 (Dab1) participate in the Reln-signaling pathway and when either is deleted, mutant mice have the same spinally mediated behavioral abnormalities, increased sensitivity to noxious heat and a profound loss in mechanical sensitivity. Both Reln and Dab1 are highly expressed in dorsal horn areas that receive and convey nociceptive information, Laminae I-II, lateral Lamina V, and the lateral spinal nucleus (LSN). Lamina I contains both projection neurons and interneurons that express Neurokinin-1 receptors (NK1Rs) and they transmit information about noxious heat both within the dorsal horn and to the brain. Here, we ask whether the increased heat nociception in Reln and dab1 mutants is due to incorrectly positioned dorsal horn neurons that express NK1Rs. We found more NK1R-expressing neurons in Reln-/- and dab1-/- Laminae I-II than in their respective wild-type mice, and some NK1R neurons co-expressed Dab1 and the transcription factor Lmx1b, confirming their excitatory phenotype. Importantly, heat stimulation in dab1-/- mice induced Fos in incorrectly positioned NK1R neurons in Laminae I-II. Next, we asked whether these ectopically placed and noxious-heat responsive NK1R neurons participated in pain behavior. Ablation of the superficial NK1Rs with an intrathecal injection of a substance P analog conjugated to the toxin saporin (SSP-SAP) eliminated the thermal hypersensitivity of dab1-/- mice, without altering their mechanical insensitivity. These results suggest that ectopically positioned NK1R-expressing neurons underlie the heat hyperalgesia of Reelin-signaling pathway mutants, but do not contribute to their profound mechanical insensitivity.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de la Matriz Extracelular/fisiología , Hiperalgesia/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Células del Asta Posterior/fisiología , Receptores de Neuroquinina-1/fisiología , Serina Endopeptidasas/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Calor , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Células del Asta Posterior/metabolismo , Receptores de Neuroquinina-1/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal , Médula Espinal/fisiopatología
10.
Nat Neurosci ; 19(1): 94-101, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26642091

RESUMEN

Although microglia have been implicated in nerve injury-induced neuropathic pain, the manner by which injured sensory neurons engage microglia remains unclear. We found that peripheral nerve injury induced de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. CSF1 was transported to the spinal cord, where it targeted the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglial activation and proliferation. In contrast, intrathecal injection of CSF1 induced mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it was required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adaptor protein DAP12 was required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglial proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Macrófagos/metabolismo , Microglía/metabolismo , Neuronas Motoras/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Masculino , Ratones , Regulación hacia Arriba
11.
PLoS One ; 10(12): e0142906, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26630489

RESUMEN

Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways.


Asunto(s)
Miedo/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Reflejo de Sobresalto/fisiología , Vocalización Animal/fisiología , Animales , Antagonistas de Dopamina/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Racloprida/farmacología , Receptores de Dopamina D2/química , Reflejo de Sobresalto/efectos de los fármacos , Ultrasonido , Vocalización Animal/efectos de los fármacos , Vocalización Animal/efectos de la radiación
12.
Pain ; 156(6): 1084-1091, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25760475

RESUMEN

Decreased spinal cord GABAergic inhibition is a major contributor to the persistent neuropathic pain that can follow peripheral nerve injury. Recently, we reported that restoring spinal cord GABAergic signaling by intraspinal transplantation of cortical precursors of GABAergic interneurons from the embryonic medial ganglionic eminence (MGE) can reverse the mechanical hypersensitivity (allodynia) that characterizes a neuropathic pain model in the mouse. We show that MGE cell transplants are also effective against both the mechanical allodynia and the heat hyperalgesia produced in a paclitaxel-induced chemotherapy model of neuropathic pain. To test the necessity of GABA release by the transplants, we also studied the utility of transplanting MGE cells from mice with a deletion of VGAT, the vesicular GABA transporter. Transplants from these mice, in which GABA is synthesized but cannot be stored or released, had no effect on mechanical hypersensitivity or heat hyperalgesia in the paclitaxel model. Taken together, these results demonstrate the therapeutic potential of GABAergic precursor cell transplantation in diverse neuropathic pain models and support our contention that restoration of inhibitory controls through release of GABA from the transplants is their mode of action.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Trasplante de Células/métodos , Hiperalgesia , Paclitaxel/toxicidad , Médula Espinal/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Factor de Transcripción Activador 3/metabolismo , Animales , Recuento de Células , Modelos Animales de Enfermedad , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Hiperalgesia/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dimensión del Dolor , Umbral del Dolor , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
13.
Neuron ; 82(3): 522-36, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811377

RESUMEN

The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (nonnociceptive)- and small (nociceptive)-diameter primary afferent fibers. The theory proposed that activation of the large-diameter afferent "closes" the gate by engaging a superficial dorsal horn interneuron that inhibits the firing of projection neurons. Activation of the nociceptors "opens" the gate through concomitant excitation of projection neurons and inhibition of the inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. The present Review highlights the complexity of superficial dorsal horn circuitry and addresses the question whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits that underlie the transmission of "pain" and "itch" messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.


Asunto(s)
Red Nerviosa/fisiología , Dolor/fisiopatología , Prurito/fisiopatología , Filtrado Sensorial/fisiología , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Red Nerviosa/patología , Dolor/diagnóstico , Prurito/diagnóstico , Médula Espinal/patología
14.
Neuron ; 78(2): 312-24, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23622066

RESUMEN

To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal projection neurons. The interneuron loss is associated with a near complete absence of supraspinally integrated pain and itch behaviors, elevated mechanical withdrawal thresholds and loss of nerve injury-induced mechanical hypersensitivity, but reflex responsiveness to noxious heat, nerve injury-induced heat hypersensitivity, and tissue injury-induced heat and mechanical hypersensitivity are intact. We conclude that different subsets of dorsal horn excitatory interneurons contribute to tissue and nerve injury-induced heat and mechanical pain and that the full expression of supraspinally mediated pain and itch behaviors cannot be generated solely by nociceptor and pruritoceptor activation of projection neurons; concurrent activation of excitatory interneurons is essential.


Asunto(s)
Interneuronas/fisiología , Dolor/genética , Dolor/patología , Prurito/patología , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética , Raíces Nerviosas Espinales/patología , Animales , Muerte Celular/genética , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/genética , Hiperalgesia/patología , Lectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas v-fos/metabolismo , Umbral del Dolor/fisiología , Fosfopiruvato Hidratasa/metabolismo , Prurito/genética , Tiempo de Reacción/genética , Receptores de Esteroides/deficiencia , Receptores de Hormona Tiroidea/deficiencia , Sustancia P/metabolismo
15.
Nat Neurosci ; 16(9): 1284-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872594

RESUMEN

TMEM16C belongs to the TMEM16 family, which includes the Ca(2+)-activated Cl(-) channels TMEM16A and TMEM16B and a small-conductance, Ca(2+)-activated, nonselective cation channel (SCAN), TMEM16F. We found that in rat dorsal root ganglia (DRG) TMEM16C was expressed mainly in the IB4-positive, non-peptidergic nociceptors that also express the sodium-activated potassium (K(Na)) channel Slack. Together these channel proteins promote K(Na) channel activity and dampen neuronal excitability. DRG from TMEM16C knockout rats had diminished Slack expression, broadened action potentials and increased excitability. Moreover, the TMEM16C knockout rats, as well as rats with Slack knockdown by intrathecal injection of short interfering RNA, exhibited increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further showed that TMEM16C modulated the single-channel activity of Slack channels and increased its sodium sensitivity. Our study thus reveals that TMEM16C enhances K(Na) channel activity in DRG neurons and regulates the processing of pain messages.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Umbral del Dolor/fisiología , Canales de Potasio/metabolismo , Células Receptoras Sensoriales/fisiología , Sodio/metabolismo , Animales , Cadmio/farmacología , Células Cultivadas , Canales de Cloruro/deficiencia , Canales de Cloruro/genética , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Nuevo Brunswick , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Canales de Potasio/genética , Canales de potasio activados por Sodio , ARN Interferente Pequeño/farmacología , Ratas , Ratas Transgénicas , Células Receptoras Sensoriales/efectos de los fármacos , Cloruro de Sodio/farmacología , Médula Espinal/citología
16.
Life Sci ; 88(13-14): 590-7, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21277866

RESUMEN

AIMS: Immunoglobulin superfamily (IgSF) proteins play a critical role in development of the nervous system. Here, a new member of IgSF gene family was cloned from rat brain, which was subsequently identified as rat homolog of Drosophila Kirre. This new molecule was named as rat Kirre (rKirre). We aimed to reveal the developmental expression of rKirre, both at mRNA and protein levels, in the central nervous system. The deduced amino acid sequence of rKirre showed a putative PDZ binding motif at the C-terminus, which provided a rationale for analyzing the co-localization of rKirre and post-synaptic density protein 95 (PSD-95) in cultured rat cortical neurons. MAIN METHODS: cDNA library screening was used in the isolation of cDNA. Northern blotting and Western blotting were used to reveal the levels of rKirre expression. In situ hybridization and immuno-fluorescent staining were used to determine the localization of rKirre. KEY FINDINGS: The rKirre gene was found to be highly expressed in the cerebrum, hippocampus, cerebellum, brain stem and spinal cord of adult rats. In parallel, the protein level of rKirre was also increased in a developing cerebral cortex. In cultured rat cortical neurons, the amount of rKirre was significantly increased during neuronal differentiation. Immuno-cytofluorescent staining indicated that rKirre was present along the neurites of cortical neurons, and was co-localized with PSD-95. SIGNIFICANCE: These results suggested that rKirre might play an essential role in neuronal differentiation and development in the central nervous system.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Animales , Northern Blotting , Western Blotting , Diferenciación Celular , Células Cultivadas , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Clonación Molecular , ADN Complementario/genética , Homólogo 4 de la Proteína Discs Large , Biblioteca de Genes , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Datos de Secuencia Molecular , Neuronas/metabolismo , Dominios PDZ , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia
17.
Pain ; 146(1-2): 130-40, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19748740

RESUMEN

Using the chronic constriction injury (CCI) model of neuropathic pain, we profiled gene expression in the rat spinal cord, and identified SIP30 as a gene whose expression was elevated after CCI. SIP30 was previously shown to interact with SNAP25, but whose function was otherwise unknown. We now show that in the spinal cord, SIP30 was present in the dorsal horn laminae where the peripheral nociceptive inputs first synapse, co-localizing with nociception-related neuropeptides CGRP and substance P. With the onset of neuropathic pain after CCI surgery, SIP30 mRNA and protein levels increased in the ipsilateral side of the spinal cord, suggesting a potential association between SIP30 and neuropathic pain. When CCI-upregulated SIP30 was inhibited by intrathecal antisense oligonucleotide administration, neuropathic pain was attenuated. This neuropathic pain-reducing effect was observed both during neuropathic pain onset following CCI, and after neuropathic pain was fully established, implicating SIP30 involvement in the development and maintenance phases of neuropathic pain. Using a secretion assay in PC12 cells, anti-SIP30 siRNA decreased the total pool of synaptic vesicles available for exocytosis, pointing to a potential function for SIP30. These results suggest a role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas del Tejido Nervioso/fisiología , Dolor/patología , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Western Blotting , Proteínas Cromosómicas no Histona/genética , Enfermedad Crónica , Constricción Patológica , Exocitosis/efectos de los fármacos , Calor , Inmunohistoquímica , Masculino , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Dolor/psicología , Dimensión del Dolor , Enfermedades del Sistema Nervioso Periférico/psicología , Estimulación Física , ARN/biosíntesis , ARN/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neuropatía Ciática/patología , Médula Espinal/metabolismo
18.
Eur J Neurosci ; 22(5): 1090-6, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16176350

RESUMEN

Neuropathic pain from nerve injury by trauma, disease or surgery often causes prolonged suffering. To explore the molecular mechanisms that underlie neuropathic pain, we used mRNA from the L4--5 segments of the lumbar spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain, and differentially screened a cDNA library from the rat brain. A novel gene, termed RSEP1 (Rat Spinal cord Expression Protein 1), was identified. Northern blots revealed that RSEP1 was expressed mainly in the central nervous system including the cerebral cortex, hippocampus, brainstem and spinal cord, as well as in the kidney and ovary. In situ hybridization showed a high level of RSEP1 expression in the CA1, CA3 and dentate gyrus regions of the hippocampus and the small sensory neurons in the dorsal horn, as well as the large neurons in the ventral horn of the spinal cord. Intrathecal injection of RSEP1 antisense oligonucleotide into the spinal cord lumbar enlargement attenuated neuropathic pain behaviours in CCI rats, suggesting a functional involvement of RSEP1 in neuropathic pain.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Dolor/metabolismo , Neuropatía Ciática/metabolismo , Animales , Conducta Animal , Northern Blotting/métodos , Encéfalo/metabolismo , Clonación Molecular/métodos , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/tratamiento farmacológico , Hibridación in Situ/métodos , Indoles/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Dolor/etiología , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Neuropatía Ciática/complicaciones , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos , Factores de Tiempo
19.
Acta Biochim Biophys Sin (Shanghai) ; 36(7): 501-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15248025

RESUMEN

The low-abundantly expressed genes composed the majorities of the mRNAs expressed in the central nervous system (CNS), and were thought to be important for the normal brain functions. Through differential screening a low-abundance cDNA sublibrary with mRNA from neuropathic pain of chronic constriction injury (CCI) model, we have identified a novel rat gene, rat spinal-cord expression protein 4 gene (RSEP4). The total length of RSEP4 cDNA is 2006 bp, with a 501 nucleotide open reading frame (ORF) that encodes a 167 amino acid polypeptide. Northern blot revealed that RSEP4 was expressed specifically in the CNS. In situ hybridization showed that the mRNA of RSEP4 was strongly expressed in the CA1, CA2, CA3 and DG regions of hippocampus, the Purkinje cells of cerebellum, and the small sensory neurons of dorsal horn and large motor neurons of ventral horn of spinal cord. Over-expression of RSEP4-EGFP fusion protein in the human embryonic kidney 293T cells showed that RSEP4 protein was mainly localized in the cell cytoplasm. These results suggest that RSEP4 may play some roles in the CNS.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , ADN Complementario , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA