Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 20(10): 1347-1352, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34017117

RESUMEN

Amorphous materials have no long-range order, but there are ordered structures at short range (2-5 Å), medium range (5-20 Å) and even longer length scales1-5. While regular6,7 and semiregular polyhedra8-10 are often found as short-range ordering in amorphous materials, the nature of medium-range order has remained elusive11-14. Consequently, it is difficult to determine whether there exists any structural link at medium range or longer length scales between the amorphous material and its crystalline counterparts. Moreover, an amorphous material often crystallizes into a phase of different composition15, with very different underlying structural building blocks, further compounding the issue. Here, we capture an intermediate crystalline cubic phase in a Pd-Ni-P amorphous alloy and reveal the structure of the medium-range order, a six-membered tricapped trigonal prism cluster (6M-TTP) with a length scale of 12.5 Å. We find that the 6M-TTP can pack periodically to several tens of nanometres to form the cube phase. Our experimental observations provide evidence of a structural link between the amorphous and crystalline phases in a Pd-Ni-P alloy at the medium-range length scale and suggest that it is the connectivity of the 6M-TTP clusters that distinguishes the crystalline and amorphous phases. These findings will shed light on the structure of amorphous materials at extended length scales beyond that of short-range order.

3.
ACS Appl Mater Interfaces ; 14(8): 10227-10236, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171561

RESUMEN

Slow kinetics in the oxygen evolution reaction (OER) remains a Gordian knot to develop an efficient and cost-effective electrocatalyst in electrochemical water splitting. In recent studies, either a synergistic effect on multimetallic catalysts or spin polarization in ferromagnetic materials is considered as a desirable way to improve water electrolysis. Herein, the OER performance of amorphous FeNiCo-based multimetallic catalysts with adjustable composition was investigated from the perspective of atomic structure. Mössbauer spectra results demonstrate that the OER activities exhibit a significant dependence on the local structure of catalysts in which a catalyst with a high content of Fe clusters of low coordination numbers tends to obtain higher activity. Furthermore, benefiting from the spin polarization of these ferromagnetic catalysts, the OER activity is notably enhanced in the presence of a magnetic field. In particular, overpotential reduction exceeding 20 mV (above 100 mA cm-2) in alkaline OER performance is observed for strong ferromagnetic catalysts in comparison with the weak ferromagnetic ones. An increment of 65.2% in turnover frequency is achieved for the catalyst with the strongest ferromagnetism. This magnetic enhancement strategy affords an effective way of improving the water oxidation performance on amorphous ferromagnetic catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA