Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38471781

RESUMEN

As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (p < 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.


Asunto(s)
Electrocorticografía , Cuero Cabelludo , Femenino , Humanos , Sueño/fisiología , Nivel de Alerta/fisiología , Vigilia/fisiología , Electroencefalografía/métodos
2.
Mol Psychiatry ; 29(3): 793-808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145987

RESUMEN

Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.


Asunto(s)
Complejo Nuclear Basolateral , Morfina , Neuronas , Núcleo Accumbens , Síndrome de Abstinencia a Sustancias , Animales , Complejo Nuclear Basolateral/metabolismo , Masculino , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Morfina/farmacología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Memoria/fisiología , Receptores AMPA/metabolismo , Ratas , Dependencia de Morfina/metabolismo , Amígdala del Cerebelo/metabolismo , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vías Nerviosas/metabolismo , Corteza Prefrontal/metabolismo
3.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321120

RESUMEN

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Bulbo Olfatorio , Mucosa Olfatoria , Trastornos Psicóticos , Esquizofrenia , Animales , Mucosa Olfatoria/patología , Mucosa Olfatoria/metabolismo , Trastornos Psicóticos/patología , Ratones , Humanos , Masculino , Inflamación/metabolismo , Inflamación/patología , Bulbo Olfatorio/patología , Bulbo Olfatorio/metabolismo , Femenino , Esquizofrenia/patología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Esquizofrenia/genética , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Olfato/fisiología , Adulto , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología
4.
Nature ; 569(7755): 245-250, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068723

RESUMEN

The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes1-4. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes5,6 preclude higher energy densities. Partial7,8 or exclusive9 anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li+. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C3.5[Br0.5Cl0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. This anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.

5.
Nature ; 570(7762): E65, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31164722

RESUMEN

In Fig. 3e of this Letter, the labels "Br-Cl1" and "Br-Cl2" should read "Br-Br1" and "Br-Br2", respectively. In the Methods section 'Preparation of electrodes', the phrase "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl (99.95%; Sigma-Aldrich)" should read "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl·H2O (99.95%; Sigma-Aldrich)". These errors have been corrected online.

6.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L754-L769, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625125

RESUMEN

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Mucosa Respiratoria/patología , Mucosa Respiratoria/metabolismo , Células Epiteliales/patología , Células Epiteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772224

RESUMEN

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Asunto(s)
Complejo Nuclear Basolateral , Homólogo 4 de la Proteína Discs Large , Memoria , Morfina , Síndrome de Abstinencia a Sustancias , Animales , Morfina/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo , Masculino , Ratones , Memoria/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Complemento C1q/metabolismo , Ratones Endogámicos C57BL , Naloxona/farmacología
8.
Nat Mater ; 22(5): 599-604, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894775

RESUMEN

Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.

9.
J Org Chem ; 89(7): 4336-4348, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38465834

RESUMEN

The chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine is the key core skeleton of potent Bruton's tyrosine kinase (BTK) inhibitor Zanubrutinib, and the catalyst-controlled asymmetric hydrogenation of planar multinuclear pyrimidine heteroarenes with multiple N atoms could provide an efficient route toward its synthesis. Owing to the strong aromaticity and poisoning effect toward chiral transition metal catalyst, asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines with multiple nitrogen atoms is still a challenge for synthesizing the chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]-pyrimidine. Herein, an efficient iridium-catalyzed asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines has been developed using substrate activation strategy, with up to 99% ee. The decagram scale synthesis further demonstrated the potential and promise of this procedure in the synthesis of Zanubrutinib. In addition, a mechanistic study indicated that the hydrogenation starts with 1,2-hydrogenation.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38683872

RESUMEN

Although ventricular capture during the atrial threshold test is possible, there are rare reports on the insulation defect and inactive leads thereof. In this case, we present a pacemaker-dependent patient with a history of pacemaker generator replacements. The patient experienced ventricular capture induced by atrial pacing due to adhesion of the atrial and ventricular leads with an insulation defect. The atrial lead was abandoned and a new lead was implanted. However, there was a significant decrease in ventricular impedance detected shortly after the new lead was implanted. When observing the phenomenon of atrial pacing-induced ventricular depolarization, one uncommon reason to consider is lead adhesive wear. It is important to pay attention to the contact and bending sites of the leads.

11.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745304

RESUMEN

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Asunto(s)
Ratones Endogámicos C57BL , PPAR gamma , Condicionamiento Físico Animal , Enfermedad Pulmonar Obstructiva Crónica , Vía de Señalización Wnt , Animales , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Masculino , Vía de Señalización Wnt/fisiología , Ratones , Condicionamiento Físico Animal/fisiología , PPAR gamma/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/fisiopatología , Inflamación/metabolismo
12.
Luminescence ; 39(2): e4666, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38178772

RESUMEN

We developed a facile strategy for the fabrication of red fluorescent carbon nanodots (R-CDs) and demonstrated their applications for Al3+ sensing. Red-emission carbon dots (CDs) were synthesized using a simple hydrothermal treatment with citric acid and urea as precursors, manifesting intriguing red-emission behaviour at 610 nm. With increasing Al3+ concentration, the fluorescence band at 610 nm decreased gradually. Monitoring the intrinsic fluorescence variation (I610nm ), as-prepared CDs were developed as an effective platform for fluorescent Al3+ sensing, with a linear range of 0.5-60.0 µM and a detection limit of 3.0 nM. More importantly, R-CDs have been applied successfully to the analysis of Al3+ in actual samples with satisfactory recoveries in the range 97.12-102.05%, which indicated that obtained CDs could be implemented as an effective tool for the identification and detection of Al3+ in actual samples.


Asunto(s)
Puntos Cuánticos , Colorantes Fluorescentes , Carbono , Solubilidad , Espectrometría de Fluorescencia , Agua
13.
Luminescence ; 39(2): e4689, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361140

RESUMEN

A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.


Asunto(s)
Cromo , Nanopartículas del Metal , Polietileneimina , Polietileneimina/química , Cobre/química , Espectrometría de Fluorescencia/métodos , Colorantes , Colorantes Fluorescentes/química , Límite de Detección , Nanopartículas del Metal/química
14.
Eur Arch Otorhinolaryngol ; 281(4): 1819-1825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38189968

RESUMEN

BACKGROUND: Gastroesophageal reflux disease (GERD) and chronic rhinosinusitis (CRS) have been shown to be potentially closely related, but the relationship between these conditions, particularly the possibility of a causal link, is not fully understood. This study used Mendelian randomization (MR) to assess the causal relationship between these two disorders. METHODS: We extracted genome-wide association study data sets for GERD and CRS from publicly available gene summaries, and used MR to conduct a causal inference analysis. The main robustness test used in this study included MR-Egger regression, a leave-one-out sensitivity test, and multivariate MR (MVMR). RESULTS: GERD increased the risk of developing CRS by 36%, based on the inverse-variance weighted method, a statistically significant association (odds ratio [OR] 1.360, 95% confidence interval [CI] 1.179-1.568, P < 0.001). Other MR assessment methods, such as weighted median, simple mode, and weighted mode, similarly observed a significant increase in the risk of CRS occurrence (OR 1.434, 95% CI 1.186-1.734, P < 0.001; OR 1.927, 95% CI 1.166-3.184, P = 0.013; and OR 1.910, 95% CI 1.222-2.983, P = 0.006, respectively). No significant bias was found in the heterogeneity or pleiotropy tests (P = 0.071 and P = 0.700, respectively). Even after excluding possible mediators using MVMR, GERD appeared to significantly increase the risk of developing CRS (OR 1.013, 95% CI 1.008-1.023, P = 0.002). CONCLUSIONS: This study provides new, significant evidence that GERD is genetically associated with a higher incidence rate of CRS. However, further research is needed to elucidate the potential underlying biological mechanisms of this relationship.


Asunto(s)
Reflujo Gastroesofágico , Rinosinusitis , Sinusitis , Humanos , Estudio de Asociación del Genoma Completo , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/epidemiología , Causalidad , Cetirizina , Enfermedad Crónica , Sinusitis/epidemiología , Sinusitis/genética
15.
Opt Express ; 31(19): 31522-31532, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710668

RESUMEN

We experimentally present a random phase feedback based on quantum noise to generate a chaotic laser with Gaussian invariant distribution. The quantum noise from vacuum fluctuations is acquired by balanced homodyne detection and injected into a phase modulator to form a random phase feedback. An optical switch using high-speed intensity modulator is employed to reset the chaotic states repeatedly and the time evolutions of intensity statistical distributions of the chaotic states stemming from the initial noise are measured. By the quantum-noise random phase feedback, the transient intensity distributions of the chaotic outputs are improved from asymmetric invariant distributions to Gaussian invariant distributions, and the Gaussian invariant distribution indicates a randomly perturbed dynamical transition from microscopic initial noise to macroscopic stochastic fluctuation. The effects of phase feedback bandwidth and modulation depth on the invariant distributions are investigated experimentally. The chaotic time-delay signature and mean permutation entropy are suppressed to 0.036 and enhanced to 0.999 using the random phase feedback, respectively. The high-quality chaotic laser with Gaussian invariant distribution can be a desired random source for ultrafast random number generation and secure communication.

16.
Cytotherapy ; 25(10): 1037-1047, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37436338

RESUMEN

BACKGROUND AIMS: Radiation therapy is the standard treatment for patients with nasopharyngeal carcinoma (NPC), but relapse occurs in 10% to 20% of patients. The treatment of recurrent nasopharyngeal carcinoma (rNPC) remains challenging. Chimeric antigen receptors (CAR)-T-cell therapy has achieved good outcomes in the treatment of leukemia and seems to be a promising therapeutic strategy for solid tumors. c-Met has been found to be highly expressed in multiple cancer types, and the activation of c-Met leads to the proliferation and metastasis of cancer cells. However, the expression of c-Met in rNPC tissues and whether it can be used as a target for CAR-T therapy in rNPC remain to be investigated. METHODS: We detected the expression of c-Met in 24 primary human rNPC tissues and three NPC cell lines and constructed two different antibody-derived anti-c-Met CARs, namely, Ab928z and Ab1028z. To estimate the function of these two different c-Met-targeted CAR-T cells, CD69 expression, cytotoxicity and cytokine secretion of CAR-T cells were assessed after coculture with target cells. A cell line-derived xenograft mouse model also was used to evaluate these two anti-c-Met CAR-T cells. Furthermore, we determined whether combination with an anti-EGFR antibody could promote the antitumor effect of CAR-T cells in a patient-derived xenograft mouse model. RESULTS: High c-Met expression was detected in 23 of 24 primary human rNPC tissues by immunohistochemistry staining and in three NPC cell lines by flow cytometry. Ab928z-T cells and Ab1028z-T cells showed significantly upregulated expression of CD69 after coculture with targeted cells. However, Ab1028z-T cells showed superior cytokine secretion and antitumor activity. Furthermore, Ab1028z-T cells effectively suppressed tumor growth compared with control CAR-T cells, and the combination with nimotuzumab further enhanced the tumor-clearing ability of Ab1028z-T cells. CONCLUSIONS: We found that c-Met is highly expressed in rNPC tissues and confirmed its potential as a CAR-T target for rNPC. Our study provides a new idea for the clinical treatment of rNPC.


Asunto(s)
Neoplasias Nasofaríngeas , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Línea Celular Tumoral , Citocinas/metabolismo , Inmunoterapia Adoptiva , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Proto-Oncogénicas c-met/metabolismo
17.
Phys Chem Chem Phys ; 25(35): 23491-23501, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615036

RESUMEN

We developed an analytical formula to calculate the influence of optical phonons on the mobility of two-dimensional Dirac materials at arbitrary temperature and arbitrary doping concentration. The method was combined with first-principles calculations to show that the effect of optical phonons on mobility is not negligible for typical Dirac materials such as graphene even though the occupation number of optical phonons is relatively small. Unlike the treatment of electron-acoustic phonon coupling, the energy change of electrons in the scattering process with optical phonons is crucial, which leads to a non-power temperature dependence of mobility under weak doping. The formalism was applied to calculate and analyze the mobility of two well-known Dirac materials, α-graphyne and the VCl3 monolayer, which differs by one to two orders of magnitude.

18.
Phys Chem Chem Phys ; 25(22): 15479-15489, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249387

RESUMEN

To understand the gas-surface chemistry above the thermal protection system of a hypersonic vehicle, it is necessary to map out the kinetics of key elementary reaction steps. In this work, extensive periodic density functional theory (DFT) calculations are performed to elucidate the interaction of atomic oxygen and nitrogen with both the basal plane and edge sites of highly oriented pyrolytic graphite (HOPG). Reaction energies and barriers are determined for adsorption, desorption, diffusion, recombination, and several reactions. These DFT results are compared with the most recent finite-rate model for air-carbon ablation. Our DFT results corroborated some of the parameters used in the model but suggest that further refinement may be necessary for others. The calculations reported here will help to establish a predictive kinetic model for the complex reaction network present under hypersonic flight conditions.

19.
Ecotoxicol Environ Saf ; 262: 115179, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37356400

RESUMEN

Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.

20.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373460

RESUMEN

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Camellia sinensis/genética , Fotosíntesis , Tilacoides/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA