Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 698: 149536, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271834

RESUMEN

The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor usually hyperactivated in hepatocellular carcinoma (HCC). In addition, about 14 % of HCC patients carry mutation in NRF2 or Kelch-like ECH-associated protein 1 (Keap1), a NRF2 inhibitor, both of which lead to constitutive activation of NRF2. It has been widely reported that NRF2 plays important roles in the proliferation, differentiation and metastasis of tumor cells. But as an important gene involved in antioxidation and anti-inflammation, little studies have focused on its role in tumor immune escape. Here we found that NRF2 gain-of-function mutation leads to reduced expression of STING and decreased infiltration of peripheral immune cells through which way it helps the tumor cells to evade from immune surveillance. This phenomenon can be reversed by STING overexpression. Our study also revealed that NRF2 mutation greatly reduced the effect of STING activating based immunotherapy. It is important to simultaneously inhibit the activity of NRF2 when using STING agonist for the treatment of HCC patients carrying NRF2 mutation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de la Membrana , Factor 2 Relacionado con NF-E2 , Escape del Tumor , Humanos , Carcinoma Hepatocelular/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/patología , Mutación , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Inflamm Res ; 73(7): 1157-1172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713235

RESUMEN

BACKGROUND: Lymphatic abnormalities are essential for pathophysiologic changes of creeping fat (CrF) in Crohn's disease (CD). Anti-tumor necrosis factor (TNF) therapy has been proved to alleviate CrF lesions, however, whether it achieves these by remodeling lymphatics is unknown. METHODS: CD74 expression was detected in CrF and uninvolved mesentery of CD patients. Lymphatic functions in vitro were evaluated and lymphatic endothelium barrier were checked by transendothelial electrical resistance (TEER) and FITC-Dextran permeability. Protein level of tight junction and signaling pathways were detected by western blotting. RESULTS: CD74 was upregulated in LECs of CrF and positively correlated with TNF-α synthesis. This was suppressed by IFX administration. In vitro, TNF-α stimulated LECs to express CD74 through NF-κB signaling pathway, and this was rescued by IFX. CD74 downregulation suppressed the abilities of LECs in proliferation, migration and tube formation. Interaction of CD74-MIF impaired LECs' barrier via reducing tight junction proteins in an ERK1/2-dependent manner, which was reversed by CD74 downregulation. Consistently, the CD patients receiving IFX therapy displayed decreased lymphangiogenesis and improved mesenteric lymphatic endothelium barrier, companied with reduced adipocyte size and adipokine levels in CrF. CONCLUSIONS: Anti-TNF therapy could modify pathological changes in CrF by alleviating CD74-mediated lymphatic abnormalities.


Asunto(s)
Tejido Adiposo , Antígenos de Diferenciación de Linfocitos B , Enfermedad de Crohn , Antígenos de Histocompatibilidad Clase II , Infliximab , Factor de Necrosis Tumoral alfa , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Humanos , Antígenos de Diferenciación de Linfocitos B/genética , Infliximab/uso terapéutico , Infliximab/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Tejido Adiposo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Femenino , Adulto , Antígenos de Histocompatibilidad Clase II/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Cultivadas , Adulto Joven , Persona de Mediana Edad , Fármacos Gastrointestinales/uso terapéutico , Fármacos Gastrointestinales/farmacología , FN-kappa B/metabolismo , Linfangiogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
3.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949843

RESUMEN

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and - according to a structural model - active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

4.
Physiol Genomics ; 55(10): 427-439, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37575065

RESUMEN

Lung squamous cell carcinoma (LUSC) is a non-small cell lung cancer with a poor prognosis owing to late diagnosis. New molecular markers are urgently needed to improve the diagnosis and prognosis of LUSC. 7-Methylguanosine (m7G) modifications, a tRNA modification, are common in eubacteria, eukaryotes, and a few archaea. These modifications promote the turnover and stability of some mRNAs to prevent mRNA decay, improve translation efficiency, and reduce ribosomal pausing but are associated with poor survival in human cancer cells. However, expression of m7G-related genes in LUSC and their association with prognosis remain unclear. In the present study, we identified nine differentially expressed genes related to prognosis by comparing the expression profiles of tumor tissues (502 LUSC reports) with normal tissues (49 adjacent nontumor lung tissue reports). The genes included six upregulated genes (KLK7, LCE3E, AREG, KLK6, ZBED2, and MAPK4) and three downregulated genes (ADH1C, NTS, and ERLIN2). Based on these nine genes, patients with LUSC were classified into low- and high-risk groups to analyze the trends in prognosis. We found that the nine m7G-related genes play important roles in immune regulation, hormone regulation, and drug sensitivity through pathways including antigen processing and presentation, adherent plaques, extracellular matrix receptor interactions, drug metabolism of cytochrome P-450, and metabolism of cytochrome P-450 to xenobiotics; the functions of these genes are likely accomplished in part by m6A modifications. The effect of m7G-related genes on the diagnosis and prognosis of LUSC was further indicated by population analysis.NEW & NOTEWORTHY Based on the differential expression of 7-methylguanosine (m7G) modification-associated genes between normal and lung squamous cell carcinoma (LUSC) tissues, and considering the performance of our m7G-related gene risk profiles as independent risk factors in predicting overall survival, we conclude that m7G modification is closely linked to the development of LUSC. In addition, this study offers a new genetic marker for predicting the prognosis of patients with LUSC and presents a crucial theoretical foundation for future investigations on the relationship between m7G modification-related genes, immunity, and drug sensitivity in LUSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Pulmón/patología , Regulación Neoplásica de la Expresión Génica
5.
Anal Chem ; 95(47): 17337-17346, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37886878

RESUMEN

Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone, which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-frozen rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 µm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of the spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines and adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multiomics.


Asunto(s)
Diagnóstico por Imagen , Metabolómica , Ratas , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metabolómica/métodos , Lipidómica , Manejo de Especímenes/métodos
6.
Environ Res ; 216(Pt 3): 114724, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343712

RESUMEN

In this study, the facile carbothermal reduction method was enforced using urea as dopant to modify the structure and chemical composition of nanoscale zero-valent-iron/biochar hybrid thereby boosting its reduction performance. Through fine-tuning the N-doped amount, the optimal nZVI/N-doped BC was obtained, which exhibited more active sites (nZVI, persistent free radicals (PFRs), pyrrolic-N) and superior electrochemical conductivity. With these blessings, the electrons originating from galvanic cell reaction could zip along the highway within the hybrid. Taking nitrobenzene (NB) as the target pollutant, the quantitative analysis revealed that the NB reduction and adsorption removal efficiency were dramatically improved by 2.42 and 2.78 times, respectively. What's more, combining the in-situ experimental detection and theoretical calculations, unexpected NB reductive multipath with respect to PFRs and pyrrolic-N accelerating the Fe3+/Fe2+ cycle within the nZVI/N-doped BC system was decoded. The enhancement of Fe3+/Fe2+ cycle improved the electron utilization efficiency and maintained the reduction reactivity of the hybrid. This work raised awareness of the mechanisms regarding the reduction performance of nZVI/N-doped BC elevated by N-doped and the pollutant reductive pathway within the system, uncovered the dusty roles of PFRs and N-species during the reduction process.

7.
Proc Natl Acad Sci U S A ; 117(7): 3502-3508, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015123

RESUMEN

Accurate analysis of blood concentration and circulation half-life is an important consideration for any intravenously administered agent in preclinical development or for therapeutic application. However, the currently available tools to measure these parameters are laborious, expensive, and inefficient for handling multiple samples from complex multivariable experiments. Here we describe a robust high-throughput quantitative microscopy-based method to measure the blood concentration and circulation half-life of any fluorescently labeled agent using only a small (2 µL) amount of blood volume, enabling additional end-point measurements to be assessed in the same subject. To validate this method, we demonstrate its use to measure the circulation half-life in mice of two types of fluorescently labeled polymeric nanoparticles of different sizes and surface chemistries and of a much smaller fluorescently labeled monoclonal antibody. Furthermore, we demonstrate the improved accuracy of this method compared to previously described methods.


Asunto(s)
Monitoreo de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía/métodos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Animales , Femenino , Semivida , Humanos , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química
8.
Nano Lett ; 22(17): 6866-6876, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35926215

RESUMEN

Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. However, the efficacy of ICB therapy is limited by the ineffective infiltration of T effector (Teff) cells to tumors and the immunosuppressive tumor microenvironment (TME). Here, we report a programmable tumor cells/Teff cells bispecific nano-immunoengager (NIE) that can circumvent these limitations to improve ICB therapy. The peptidic nanoparticles (NIE-NPs) bind tumor cell surface α3ß1 integrin and undergo in situ transformation into nanofibrillar network nanofibers (NIE-NFs). The prolonged retained nanofibrillar network at the TME captures Teff cells via the activatable α4ß1 integrin ligand and allows sustained release of resiquimod for immunomodulation. This bispecific NIE eliminates syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. The in vivo structural transformation-based supramolecular bispecific NIE represents an innovative class of programmable receptor-mediated targeted immunotherapeutics to greatly enhance ICB therapy against cancers.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Inmunomodulación , Integrinas , Ratones , Neoplasias/tratamiento farmacológico , Linfocitos T
9.
Bioconjug Chem ; 33(12): 2332-2340, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36350013

RESUMEN

Human serum albumin (HSA) is the most abundant protein in human blood plasma. It plays a critical role in the native transportation of numerous drugs, metabolites, nutrients, and small molecules. HSA has been successfully used clinically as a noncovalent carrier for insulin (e.g., Levemir), GLP-1 (e.g., Liraglutide), and paclitaxel (e.g., Abraxane). Site-specific bioconjugation strategies for HSA only would greatly expand its role as the biocompatible, non-toxic platform for theranostics purposes. Using the enabling one-bead one-compound (OBOC) technology, we generated combinatorial peptide libraries containing myristic acid, a well-known binder to HSA at Sudlow I and II binding pockets, and an acrylamide. We then used HSA as a probe to screen the OBOC myristylated peptide libraries for reactive affinity elements (RAEs) that can specifically and covalently ligate to the lysine residue at the proximity of these pockets. Several RAEs have been identified and confirmed to be able to conjugate to HSA covalently. The conjugation can occur at physiological pH and proceed with a high yield within 1 h at room temperature. Tryptic peptide profiling of derivatized HSA has revealed two lysine residues (K225 and K414) as the conjugation sites, which is much more specific than the conventional lysine labeling strategy with N-hydroxysuccinimide ester. The RAE-driven site-specific ligation to HSA was found to occur even in the presence of other prevalent blood proteins such as immunoglobulin or whole serum. Furthermore, these RAEs are orthogonal to the maleimide-based conjugation strategy for Cys34 of HSA. Together, these attributes make the RAEs the promising leads to further develop in vitro and in vivo HSA bioconjugation strategies for numerous biomedical applications.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica/metabolismo , Lisina/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Unión Proteica
10.
Appl Microbiol Biotechnol ; 106(18): 6047-6057, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36040489

RESUMEN

Fungal bifunctional terpene synthases (BFTSs) have been reported to contribute to the biosynthesis of a variety of di/sesterterpenes via different carbocation transportation pathways. Genome mining of new BFTSs from unique fungal resources will, theoretically, allow for the identification of new terpenes. In this study, we surveyed the distribution of BFTSs in our in-house collection of 430 pathogenetic fungi and preferred two BFTSs (CsSS and NnNS), long distance from previously characterized BFTSs and located in relatively independent branches, based on the established phylogenetic tree. The heterologous expression of the two BFTSs in Aspergillus oryzae and Saccharomyces cerevisiae led to the identification of two new sesterterpenes separately, 5/12/5 tricyclic type-A sesterterpene (schultriene, 1) for CsSS and 5/11 bicyclic type-B sesterterpene (nigtetraene, 2) for NnNS. In addition, to the best of our knowledge, 2 is the first 5/11 bicyclic type-B characterized sesterterpene to date. On the basis of this, the plausible cyclization mechanisms of 1 and 2 were proposed based on density functional theory calculations. These new enzymes and their corresponding terpenes suggest that the chemical spaces produced by BFTSs remain large and also provide important evidences for further protein engineering for new terpenes and for understanding of cyclization mechanism catalyzed by BFTSs. KEY POINTS: • Genome mining of two BFTSs yields two new sesterterpenoids correspondingly. • Identification of the first 5/11 ring system type-B product. • Parse out the rational cyclization mechanism of isolated sesterterpenoids.


Asunto(s)
Aspergillus oryzae , Sesterterpenos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ciclización , Hongos/metabolismo , Filogenia , Sesterterpenos/metabolismo , Terpenos
11.
Ecotoxicol Environ Saf ; 245: 114100, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155331

RESUMEN

Silicosis is a severe progressive lung disease without effective treatment methods. Previous evidence has demonstrated that endothelial cell to mesenchymal transition (EndoMT) plays an essential role in pulmonary fibrosis, and pulmonary fibrosis is associated with dysregulation of autophagy, while the relationship between autophagy and EndoMT has not yet been adequately studied. Herein, we established a mouse model of silicosis, and we found that the pharmacological induction of the AMPK/mTOR-dependent pathway using 100 mg/kg Metformin (Met) enhanced autophagy in vivo, and results of the Western blot showed that autophagy-related proteins, LC3 II/I ratio, and Beclin-1 increased while p62 decreased. In addition, Met treatment attenuated silica-induced pulmonary inflammation and decreased collagen deposition by suppressing EndoMT, and the proliferation of human umbilical vein endothelial cells (HUVECs) was also inhibited. Notably, the tube forming assay showed that Met also protected the vascular endothelial cells from silica-induced morphological damage. In conclusion, Met can alleviate inflammatory response and collagen deposition in the process of pulmonary fibrosis induced by silica via suppressing EndoMT through the AMPK/mTOR signaling pathway.


Asunto(s)
Metformina , Fibrosis Pulmonar , Silicosis , Proteínas Quinasas Activadas por AMP , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/farmacología , Beclina-1 , Colágeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metformina/farmacología , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Transducción de Señal , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Serina-Treonina Quinasas TOR
12.
Nano Lett ; 21(8): 3680-3689, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33596656

RESUMEN

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.


Asunto(s)
Endosomas , Polímeros , Animales , Línea Celular Tumoral , Silenciador del Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , ARN Interferente Pequeño/genética
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 805-814, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36224682

RESUMEN

Objective: To explore the effects of hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) on the migration and invasion of HTR-8/SVneo cells, a human trophoblast cell line, and its potential mechanism of action. Methods: Immunofluorescence staining was done to evaluate the expression levels of HADHA in samples of normal villi and recurrent spontaneous abortion (RSA) villi at 6-8 weeks. Lentiviral infection system was used to construct stable HTR-8/SVneo cell lines with HADHA overexpression and knockdown. Western blot, qRT-PCR, Wound-healing assay, and Transwell assay were used to determine the effect of HADHA on the migration and invasion of HTR-8/SVneo cells and the expression of relevant genes. Transcriptome sequencing and bioinformatics analysis were done to screen for the potential target genes and signaling pathways regulated by HADHA. The specific molecular mechanism of how HADHA regulates the migration and invasion of HTR-8/SVneo cells was examined by adding the inhibitor of protein kinase B (PKB/AKT). Results: HADHA was highly expressed in extravillous trophoblasts (EVT) of RSA villus samples as compared with samples from the normal control group. In HTR-8/SVneo cells overexpressing HADHA, the expression levels of migration and invasion-related genes, including HLA-G, MMP2, MMP9, and NCAD, were decreased (P<0.01,P<0.05), and the migration and invasion abilities of HTR-8/SVneo cells were weakened (P<0.05). HADHA knockdown increased the expression levels of HLA-G, MMP2, MMP9, and NCAD (P<0.01, P<0.05), and promoted the migration and invasion of HTR-8/SVneo cells (P<0.05). In addition, HADHA overexpression decreased the phosphorylation levels of PI3K and AKT (P<0.05) and inhibited the PI3K/AKT signaling pathway. HADHA knockdown activated the PI3K/AKT signaling pathway. When MK-2206, an AKT inhibitor, was added to stable HTR-8/SVneo cell lines with HADHA knockdown, the migration and invasion of the cells were significantly reduced. Conclusion: HADHA inhibits the migration and invasion of HTR-8/SVneo cells by inhibiting the PI3K/AKT signaling pathway.


Asunto(s)
Preeclampsia , Proteínas Proto-Oncogénicas c-akt , Movimiento Celular/fisiología , Coenzima A/metabolismo , Coenzima A/farmacología , Femenino , Antígenos HLA-G/metabolismo , Antígenos HLA-G/farmacología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Subunidad alfa de la Proteína Trifuncional Mitocondrial/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Trofoblastos/metabolismo
14.
Reproduction ; 161(6): 633-644, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812346

RESUMEN

The syncytiotrophoblast, derived from cytotrophoblast fusion, is responsible for maternal-fetal exchanges, secretion of pregnancy-related hormones, and fetal defense against pathogens. Inadequate cytotrophoblast fusion can lead to pregnancy disorders, such as preeclampsia and fetal growth restriction. However, little is known about the mechanism of cytotrophoblast fusion in both physiological and pathological pregnancy conditions. In this study, P57kip2 (P57), a cell cycle-dependent kinase inhibitor that negatively regulates the cell cycle, was found to be up-regulated during the process of syncytialization in both primary trophoblast cells and BeWo cells. Co-immunofluorescence with proliferation markers Ki67 and Cyclin-CDK factors further showed that P57 specifically localizes in the post-mitotic cytotrophoblast subtype of the early pregnancy villi. Overexpression of P57 promoted trophoblast syncytialization by arresting the cell cycle at the G1/G0 phase and inhibiting proliferation. Blocking of the cell cycle through a serum starvation culture resulted in an enhancement of cytotrophoblast fusion and the up-regulation of P57. In both spontaneous cytotrophoblast fusion and forskolin-induced BeWo cell fusion models, an initial up-regulation of P57 was observed followed by a subsequent down-regulation. These findings indicate that proper expression of P57 at cytotrophoblast differentiation nodes plays an important role in trophoblast syncytialization.


Asunto(s)
Puntos de Control del Ciclo Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Placenta/fisiología , Trofoblastos/fisiología , Fusión Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Humanos , Placenta/citología , Embarazo , Trofoblastos/citología
15.
Nano Lett ; 20(2): 1117-1123, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32003222

RESUMEN

Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine-co-ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency (R2 = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency in vitro also showed good transfection efficiency in vivo, and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.


Asunto(s)
Técnicas de Transferencia de Gen , Luciferasas de Renilla/genética , Sondas Moleculares/genética , ARN Mensajero/genética , Citosol/química , Citosol/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Luciferasas de Renilla/química , Sondas Moleculares/química , Nanopartículas/química , Transfección/métodos
16.
J Nat Prod ; 83(11): 3338-3346, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33095987

RESUMEN

4-Hydroxy pyridones are a class of fungi-derived polyketide-nonribosomal peptide products featuring a core of 4-hydroxy-2-pyridone which have a wide range of biological activities. Genome mining of in-house strains using polyketide synthase-nonribosomal peptide synthase as a query identified an endophyte Tolypocladium sp. 49Y, which possesses a potential 4-hydroxy pyridone biosynthetic gene cluster. Heterologous expression in Aspergillus oryzae NSAR1 revealed that this gene cluster is functional and able to produce a rare type of 4-hydroxy pyridones called tolypyridones (compounds 3 and 4). Tolypocladium sp. 49Y was grown in a variety of media which led to the isolation of six 4-hydroxy pyridones (5-10) and one pyrrolidone (11) from a rice culture, and compounds 3 and 9 showed antifungal activity. These latter compounds are different from those obtained by heterologous expression. This study shows that both heterologous expression and cultivation of the native host are complementary approaches to discover new natural products.


Asunto(s)
Ascomicetos/metabolismo , Aspergillus oryzae/genética , Piridonas/aislamiento & purificación , Ascomicetos/crecimiento & desarrollo , Medios de Cultivo , Genes Fúngicos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Familia de Multigenes , Plásmidos , Piridonas/química , Piridonas/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
17.
J Cell Biochem ; 120(10): 17405-17412, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31106881

RESUMEN

To investigate the effect and mechanism of microRNA-92b-3p (miR-92b-3p) targeting Homeobox D10 (HOXD10) on proliferation, migration, and invasion of gastric cancer, we detected the expression of miR-92b-3p and HOXD10 in SGC-7901 cells. The effects of miR-92b-3p or HOXD10 on proliferation, migration, invasion, and matrix metalloproteinase (MMP)-2/9 expression in SGC-7901 cells were measured by the Cell Counting Kit-8 assay, Transwell assay, and Western blot, respectively. The results showed that miR-92b-3p expression was increased, and HOXD10 expression was decreased in SGC-7901 cells, compared with human normal gastric epithelial cells GES-1. Functional experiments demonstrated that cell proliferation, migration, invasion, and expression of MMP-2/9 in SGC-7901 cells were significantly inhibited by miR-92b-3p silencing and HOXD10 overexpression. Moreover, HOXD10 was a potential target gene of miR-92b-3p as evidenced by the TargetScan software and double luciferase reporter assay. In the rescue experiment, knockdown of HOXD10, accompanied by higher expression of MMP-2/9, could significantly eliminate the inhibitory effects of miR-92b-3p silencing on cell proliferation, migration, and invasion. In conclusion, miR-92b-3p is highly expressed in gastric cancer SGC-7901 cells, and interfering with its expression might inhibit SGC-7901 cell proliferation, migration, and invasion via downregulating MMP-2/9 expression and targeting HOXD10.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Homeodominio/genética , Humanos , Invasividad Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Células Tumorales Cultivadas
18.
J Am Chem Soc ; 141(4): 1473-1478, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30624920

RESUMEN

A novel enantioselective aminomethylation reaction of diazo compound, alcohol and α-aminomethyl ether enabled by asymmetric counteranion-directed catalysis is disclosed that offers an efficient and convenient access to furnish optically active α-hydroxyl-ß-amino acids in high yield with high to excellent enantioselectivities. Control experiments and DFT calculations indicate that the transformation proceeds through trapping the in situ generated enol intermediate with methylene iminium ion, and the asymmetric induction was enabled by chiral pentacarboxycyclopentadiene anion via H-bonding and electrostatic interaction.

19.
J Comput Chem ; 40(9): 1038-1044, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30299551

RESUMEN

Gold-catalyzed intermolecular alkyne oxidation has attracted much synthetic attention, but mostly suffering undesired over-oxidation. Recent experiments demonstrated that over-oxidation could be dramatically suppressed in zinc(II)-catalyzed intermolecular alkyne oxidation/CH functionalization. By means of first-principle density functional theory calculations, we explored the mechanism of the M-catalyzed intermolecular alkyne oxidations (M = Zn(OTf)2 and Au+ PR3 ) as well as the effects of oxidants, temperature, and metal catalysts on chemoselectivity, in an effort to disclose the origin of the extraordinary chemoselectivity pertaining to zinc catalysis. Our calculations indicate that the Zn-catalyzed intermolecular alkyne oxidation/CH functionalization proceeds by a Friedel-Crafts alkylation mechanism rather than metal carbene insertion mechanism. The chemoselectivity of CH functionalization against over-oxidation in Zn catalysis, in comparison with gold catalysis, can be jointly controlled by four factors: (1) the use of less nucleophilic N-oxide, (2) the enhanced electrophilicity and carbocationic nature of the carbenic site in the α-oxo metal carbenoid intermediate, (3) enhanced steric repulsion to incoming oxidant exerted by bulky ancillary ligand in the close nearby of the carbenic site to disfavor intermolecular over-oxidation and (4) the large negative value of activation entropy in the intermolecular over-oxidation pathway, that jointly give rise to lower activation free energy for the intramolecular cyclization/CH functionalization pathway than for the intermolecular over-oxidation pathway. © 2018 Wiley Periodicals, Inc.

20.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068648

RESUMEN

Because membrane fusion is a crucial step in the process by which enveloped viruses invade host cells, membrane fusion inhibitors can be effective drugs against enveloped viruses. We found that surfactin from Bacillus subtilis can suppress the proliferation of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) in epithelial cells at a relatively low concentration range (15 to 50 µg/ml), without cytotoxicity or viral membrane disruption. Membrane fusion inhibition experiments demonstrate that surfactin treatment significantly reduces the rate at which the virus fuses to the cell membrane. Thermodynamic experiments show that the incorporation of small amounts of surfactin hinders the formation of negative curvature by lamellar-phase lipids, suggesting that surfactin acts a membrane fusion inhibitor. A fluorescent lipopeptide similar to surfactin was synthesized, and its ability to insert into the viral membrane was confirmed by spectroscopy. In vivo experiments have shown that oral administration of surfactin to piglets protects against PEDV infection. In conclusion, our study indicates that surfactin is a membrane fusion inhibitor with activity against enveloped viruses. As the first reported naturally occurring wedge lipid membrane fusion inhibitor, surfactin is likely to be a prototype for the development of a broad range of novel antiviral drugs.IMPORTANCE Membrane fusion inhibitors are a rapidly emerging class of antiviral drugs that inhibit the infection process of enveloped viruses. They can be classified, on the basis of the viral components targeted, as fusion protein targeting or membrane lipid targeting. Lipid-targeting membrane fusion inhibitors have a broader antiviral spectrum and are less likely to select for drug-resistant mutations. Here we show that surfactin is a membrane fusion inhibitor and has a strong antiviral effect. The insertion of surfactin into the viral envelope lipids reduces the probability of viral fusion. We also demonstrate that oral administration of surfactin protects piglets from PEDV infection. Surfactin is the first naturally occurring wedge lipid membrane fusion inhibitor that has been identified and may be effective against many viruses beyond the scope of this study. Understanding its mechanism of action provides a foundation for the development of novel antiviral agents.


Asunto(s)
Antivirales/farmacología , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Virus de la Diarrea Epidémica Porcina/crecimiento & desarrollo , Virus de la Gastroenteritis Transmisible/crecimiento & desarrollo , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Bacillus subtilis/metabolismo , Línea Celular , Membrana Celular/virología , Células Epiteliales/virología , Ratones , Ratones Endogámicos BALB C , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA