Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Semin Cell Dev Biol ; 120: 94-107, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34059419

RESUMEN

Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.


Asunto(s)
Epitelio/metabolismo , Morfogénesis/fisiología , Animales , Drosophila
2.
PLoS Comput Biol ; 17(12): e1009614, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871312

RESUMEN

Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano-biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano-polarity coupling.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Blastodermo , Polaridad Celular/fisiología , Desarrollo Embrionario/fisiología , Epitelio/fisiología , Animales , Blastodermo/citología , Blastodermo/fisiología , Drosophila/embriología , Células Epiteliales/citología , Células Epiteliales/fisiología , Modelos Biológicos
3.
J Cell Sci ; 132(5)2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30659113

RESUMEN

The Hippo signaling network controls organ growth through YAP family transcription factors, including the Drosophila Yorkie protein. YAP activity is responsive to both biochemical and biomechanical cues, with one key input being tension within the F-actin cytoskeleton. Several potential mechanisms for the biomechanical regulation of YAP proteins have been described, including tension-dependent recruitment of Ajuba family proteins, which inhibit kinases that inactivate YAP proteins, to adherens junctions. Here, we investigate the mechanism by which the Drosophila Ajuba family protein Jub is recruited to adherens junctions, and the contribution of this recruitment to the regulation of Yorkie. We identify α-catenin as the mechanotransducer responsible for tension-dependent recruitment of Jub by identifying a region of α-catenin that associates with Jub, and by identifying a region, which when deleted, allows constitutive, tension-independent recruitment of Jub. We also show that increased Jub recruitment to α-catenin is associated with increased Yorkie activity and wing growth, even in the absence of increased cytoskeletal tension. Our observations establish α-catenin as a multi-functional mechanotransducer and confirm Jub recruitment to α-catenin as a key contributor to biomechanical regulation of Hippo signaling.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Alas de Animales/fisiología , alfa Catenina/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión/genética , Fenómenos Biomecánicos , Adhesión Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Mecanotransducción Celular , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Señalizadoras YAP
4.
Nature ; 484(7394): 390-3, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22456706

RESUMEN

During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical-basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.


Asunto(s)
Uniones Adherentes/fisiología , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Células Epiteliales/citología , Epitelio/embriología , Gastrulación/fisiología , Uniones Adherentes/ultraestructura , Animales , Forma de la Célula , Coristoma , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Epitelio/metabolismo , Epitelio/ultraestructura , Gástrula/citología , Gástrula/embriología , Gástrula/metabolismo , Gástrula/ultraestructura , Glucógeno Sintasa Quinasa 3 , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Biophys J ; 112(12): 2683-2695, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636924

RESUMEN

During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems.


Asunto(s)
Células Epiteliales/citología , Epitelio/anatomía & histología , Epitelio/embriología , Animales , Fenómenos Biomecánicos , Comunicación Celular , Forma de la Célula , Drosophila , Modelos Biológicos
6.
Development ; 141(14): 2895-900, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948599

RESUMEN

Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/embriología , Epitelio/embriología , Gastrulación , Animales , Forma de la Célula , Rastreo Celular , Drosophila melanogaster/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Procesamiento de Imagen Asistido por Computador , Programas Informáticos
7.
Biol Open ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38156558

RESUMEN

Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.


Asunto(s)
Técnicas Biosensibles , Drosophila , Masculino , Animales , Drosophila/genética , Necrosis , Apoptosis , Espermatogénesis
8.
Nature ; 434(7030): 229-34, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15759004

RESUMEN

In many developmental contexts, a locally produced morphogen specifies positional information by forming a concentration gradient over a field of cells. However, during embryonic dorsal-ventral patterning in Drosophila, two members of the bone morphogenetic protein (BMP) family, Decapentaplegic (Dpp) and Screw (Scw), are broadly transcribed but promote receptor-mediated signalling in a restricted subset of expressing cells. Here we use a novel immunostaining protocol to visualize receptor-bound BMPs and show that both proteins become localized to a sharp stripe of dorsal cells. We demonstrate that proper BMP localization involves two distinct processes. First, Dpp undergoes directed, long-range extracellular transport. Scw also undergoes long-range movement, but can do so independently of Dpp transport. Second, an intracellular positive feedback circuit promotes future ligand binding as a function of previous signalling strength. These data elicit a model in which extracellular Dpp transport initially creates a shallow gradient of BMP binding that is acted on by positive intracellular feedback to produce two stable states of BMP-receptor interactions, a spatial bistability in which BMP binding and signalling capabilities are high in dorsal-most cells and low in lateral cells.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Animales , Dimerización , Drosophila melanogaster/citología , Inmunohistoquímica , Ligandos , Transporte de Proteínas , Transducción de Señal , Metaloproteinasas Similares a Tolloid , Factor de Crecimiento Transformador beta/metabolismo
9.
Dev Cell ; 53(2): 212-228.e12, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169160

RESUMEN

Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Epitelio/embriología , Morfogénesis , Miosina Tipo II/metabolismo , Animales , Animales Modificados Genéticamente/embriología , Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Mecanotransducción Celular , Miosina Tipo II/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nat Cell Biol ; 20(1): 36-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29203884

RESUMEN

Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. We show that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism.


Asunto(s)
Proteínas de Drosophila/genética , Gástrula/metabolismo , Homeostasis/genética , Katanina/genética , Mecanotransducción Celular , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Polaridad Celular , Tamaño de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Dineínas/genética , Dineínas/metabolismo , Embrión no Mamífero , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Gástrula/citología , Gástrula/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Katanina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Miosinas/genética , Miosinas/metabolismo
11.
Dev Cell ; 25(3): 299-309, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23623612

RESUMEN

Localized cell shape change initiates epithelial folding, while neighboring cell invagination determines the final depth of an epithelial fold. The mechanism that controls the extent of invagination remains unknown. During Drosophila gastrulation, a higher number of cells undergo invagination to form the deep posterior dorsal fold, whereas far fewer cells become incorporated into the initially very similar anterior dorsal fold. We find that a decrease in α-catenin activity causes the anterior fold to invaginate as extensively as the posterior fold. In contrast, constitutive activation of the small GTPase Rap1 restricts invagination of both dorsal folds in an α-catenin-dependent manner. Rap1 activity appears spatially modulated by Rapgap1, whose expression levels are high in the cells that flank the posterior fold but low in the anterior fold. We propose a model whereby distinct activity states of Rap1 modulate α-catenin-dependent coupling between junctions and actin to control the extent of epithelial invagination.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Células Epiteliales/citología , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Membrana Celular/metabolismo , Forma de la Célula , Drosophila/citología , Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Embrión no Mamífero/metabolismo , Activación Enzimática , Células Epiteliales/enzimología , Genes de Insecto , Proteínas Fluorescentes Verdes/metabolismo , Uniones Intercelulares/metabolismo , Interferencia de ARN , Factores de Tiempo , Imagen de Lapso de Tiempo
12.
Curr Biol ; 23(22): 2296-2302, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24184102

RESUMEN

To achieve the "constancy of the wild-type," the developing organism must be buffered against stochastic fluctuations and environmental perturbations. This phenotypic buffering has been theorized to arise from a variety of genetic mechanisms and is widely thought to be adaptive and essential for viability. In the Drosophila blastoderm embryo, staining with antibodies against the active, phosphorylated form of the bone morphogenetic protein (BMP) signal transducer Mad, pMad, or visualization of the spatial pattern of BMP-receptor interactions reveals a spatially bistable pattern of BMP signaling centered on the dorsal midline. This signaling event is essential for the specification of dorsal cell fates, including the extraembryonic amnioserosa. BMP signaling is initiated by facilitated extracellular diffusion that localizes BMP ligands dorsally. BMP signaling then activates an intracellular positive feedback circuit that promotes future BMP-receptor interactions. Here, we identify a genetic network comprising three genes that canalizes this BMP signaling event. The BMP target eiger (egr) acts in the positive feedback circuit to promote signaling, while the BMP binding protein encoded by crossveinless-2 (cv-2) antagonizes signaling. Expression of both genes requires the early activity of the homeobox gene zerknüllt (zen). Two Drosophila species lacking early zen expression have high variability in BMP signaling. These data both detail a new mechanism that generates developmental canalization and identify an example of a species with noncanalized axial patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de la Membrana/genética , Proteínas Represoras/genética , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA