Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(1): 91-102, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184367

RESUMEN

The mechanism of the development of granulocyte progenitor cells into neutrophils under steady-state and pathological conditions remains unclear. In this study, our results showed that with the development of neutrophils from hematopoietic stem cells to mature neutrophils, the expression level of the Hippo kinase MST1 gradually increased. Mst1-specific deficiency in myeloid cells caused neutrophilia, with an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte-macrophage progenitors under steady-state conditions and during Listeria monocytogenes infection. Mechanistically, mTOR and HIF1α signaling are required for regulating the balance between glycolysis and succinate dehydrogenase-mediated oxidative phosphorylation, which is crucial for Mst1-/--induced proliferation of granulocyte-monocyte progenitors, lineage-decision factor C/EBPα expression, and granulopoiesis. HIF1α directly regulated C/EBPα promoter activities. Blocking mTOR and HIF1α or adjusting the balance between glycolysis and succinate dehydrogenase-mediated oxidative phosphorylation reversed the granulopoiesis induced by Mst1-/- under steady-state conditions or infection in mice. Thus, our findings identify a previously unrecognized interplay between Hippo kinase MST1 signaling and mTOR-HIF1α metabolic reprogramming in granulocyte progenitor cells that underlies granulopoiesis.


Asunto(s)
Células Precursoras de Granulocitos , Succinato Deshidrogenasa , Animales , Ratones , Diferenciación Celular/fisiología , Homeostasis , Serina-Treonina Quinasas TOR
2.
J Am Chem Soc ; 146(28): 18958-18966, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38952302

RESUMEN

Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and ß-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.

3.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625675

RESUMEN

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

4.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837248

RESUMEN

Electrochemiluminescence (ECL) involves charge transfer between electrochemical redox intermediates to produce an excited state for light emission. Ensuring precise control of charge transfer is essential for decoding ECL fundamentals, yet guidelines on how to achieve this for conventional emitters remain unexplored. Molecular ratchets offer a potential solution, as they enable the directional transfer of energy or chemicals while impeding the reverse movement. Herein, we designed 10 pairs of imine-based covalent organic frameworks as reticular ratchets to delicately manipulate the intrareticular charge transfer for directing ECL transduction from electric and chemical energies. Aligning the donor and acceptor (D-A) directions with the imine dipole effectively facilitates charge migration, whereas reversing the D-A direction impedes it. Notably, the ratchet effect of charge transfer directionality intensified with increasing D-A contrast, resulting in a remarkable 680-fold improvement in the ECL efficiency. Furthermore, dipole-controlled exciton binding energy, electron/hole decay kinetics, and femtosecond transient absorption spectra identified the electron transfer tendency from the N-end toward the C-end of reticular ratchets during ECL transduction. An exponential correlation between the ECL efficiency and the dipole difference was discovered. Our work provides a general approach to manipulate charge transfer and design next-generation electrochemical devices.

5.
Mol Cancer ; 23(1): 8, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195534

RESUMEN

Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/terapia , Inmunoterapia , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Combinada , Neoplasias Renales/terapia
6.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491381

RESUMEN

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma de Células Renales , Neoplasias Renales , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Receptores Quiméricos de Antígenos/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/uso terapéutico , Antígenos de Neoplasias , Anticuerpos , Linfocitos T/metabolismo
7.
Int J Cancer ; 154(5): 773-785, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815294

RESUMEN

Neutrophil extracellular trap (NET) is one of the defense functions of neutrophils, which has a rapid ability to kill infections and is also crucial in a variety of immune-associated diseases including infections, tumors and autoimmune diseases. Recent studies have shown that NETs are closely related to the development of tumors. The regulatory role of NETs in tumors has been of interest to researchers. In addition to awakening latent tumor cells, NETs can also promote the proliferation and development of tumor cells and their metastasis to other sites. At the same time, NETs also have the effect of inhibiting tumors. At present, there are some new advances in the impact of NETs on tumor development, which will provide a more theoretical basis for developing NET-targeted drugs. Therefore, this review just summarized the formation process of NETs, the regulation of tumor development and the treatment methods based on NETs.


Asunto(s)
Enfermedades Autoinmunes , Trampas Extracelulares , Neoplasias , Humanos , Neutrófilos , Neoplasias/patología
8.
Funct Integr Genomics ; 24(1): 30, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358412

RESUMEN

LTBP1 is closely related to TGF-ß1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-ß and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Pronóstico , Transición Epitelial-Mesenquimal , Línea Celular , Metástasis Linfática , Microambiente Tumoral , Proteínas de Unión a TGF-beta Latente/genética
9.
J Gene Med ; 26(1): e3615, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123364

RESUMEN

BACKGROUND: The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS: After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS: The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS: We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.


Asunto(s)
Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Células Madre , ARN Mensajero/metabolismo , Integrinas/uso terapéutico
10.
Small ; 20(38): e2401307, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801308

RESUMEN

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

11.
Small ; 20(16): e2307786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38161248

RESUMEN

To date, transforming environmental energy into electricity through a non-mechanical way is challenging. Herein, a series of photomechaelectric (PME) polyurethanes containing azobenzene-based photoisomer units and ionic liquid-based dipole units are synthesized, and corresponding PME nanogenerators (PME-NGs) to harvest electricity are fabricated. The dependence of the output performance of PME-NGs on the structure of the polyurethane is evaluated. The results show that the UV light energy can directly transduce into alternating-current (AC) electricity by PME-NGs via a non-mechanical way. The optimal open-circuit voltage and short-circuit current of PME-NGs under UV illumination reach 17.4 V and 696 µA, respectively. After rectification, the AC electricity can be further transformed into direct-current (DC) electricity and stored in a capacitor to serve as a power system to actuate typical microelectronics. The output performance of PME-NGs is closely related to the hard segment content of the PME polyurethane and the radius of counter anions in the dipole units. Kelvin probe force microscopy is used to confirm the existence of the PME effect and the detailed mechanism about the generation of AC electricity in PME-NGs is proposed, referring to the back and forth drift of induced electrons on the two electrodes in contact with the PME polyurethanes.

12.
Small ; 20(43): e2400770, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38934533

RESUMEN

Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity. Briefly, the OMVs are engineered with Lyp1-Traptavidin (S52G, R53D mutant of streptavidin) fusion protein displayed on the surface. The Lyp-1 endows the OMV with the capacity to target tumor tissues, while the Traptavidin ensures easy decoration of biotinylated anti-PD-L1 and biotinylated M6P (mannose 6-phosphate). The simultaneously anchored anti-PD-L1 and M6P (ligand for cation-independent mannose 6-phosphate receptor) on the engineered OMVs coordinately direct the membrane PD-L1 to lysosome for degradation, and thus unleash the anti-tumor immunity. With syngeneic tumor model, the engineered OMVs are confirmed to boost immunity, inhibit cancer growth, and thus prolong survival. Together, A proposed OMV-based modular nanosystem that enables assembly of biotinylated anti-PD-L1 and M6P on the surface for tumor-targeted immune checkpoint blockade.


Asunto(s)
Antígeno B7-H1 , Membrana Externa Bacteriana , Lisosomas , Antígeno B7-H1/metabolismo , Animales , Lisosomas/metabolismo , Membrana Externa Bacteriana/metabolismo , Ratones , Humanos , Línea Celular Tumoral
13.
Int J Obes (Lond) ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164463

RESUMEN

BACKGROUND: Current randomized trial evidence for the effects of physical activity intervention on weight change in adults was mainly from western countries, with little reliable evidence from low- and middle-income countries, such as China, where lifestyle factors and obesity patterns differ substantially from those in western countries. We examined the effects of physical activity intervention on weight change using cluster randomized trial data among Chinese older adults. METHODS: The cluster randomized controlled trial included an 8-week physical activity intervention period and was followed up to 24 months. Eight villages were randomly assigned to the intervention group (4 villages, n = 240) or the control group (4 villages, n = 268). The intervention group received physical activity intervention based on the socio-ecological model, while the control group did not. The intervention involved three levels: individual, interpersonal, and community levels, which aimed to promote leisure-time physical activity of participants. The primary outcome of the present study was the difference in percentage weight change at 24 months from baseline. We used Tanita BC-601 analyzer scales to measure weight and recorded it to the nearest 0.1 kg. RESULTS: Among the 508 participants, the mean age was 70.93 (SD, 5.69) years, and 55.5% were female. There were significant differences in percentage weight change between the intervention group and the control group with a mean change of -1.78% (95% CI, -2.67% to -0.90%; p < 0.001) in the total sample, -1.94% (95% CI, -3.14% to -0.73%; p = 0.002) in participants with overweight/obesity, and -1.45% (95% CI, -2.73% to -0.18%; p = 0.027) among participants with underweight/healthy weight in favor of the intervention group at 24 months. CONCLUSIONS: Physical activity intervention resulted in weight loss in rural older sample at 24 months. This suggested that physical activity interventions are feasible for weight loss among older adults, especially for those with overweight/obesity or aged under 80. TRIAL REGISTRATION: The study has been registered on the Chinese Clinical Trial Registry on April 20, 2021 (ChiCTR2100045653), https://www.chictr.org.cn/showproj.html?proj=123704 .

14.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735590

RESUMEN

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Asunto(s)
Autofagia , Insuficiencia Cardíaca , Inhibidores de Histona Desacetilasas , Isoproterenol , Ratones Endogámicos C57BL , Miocitos Cardíacos , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Isoproterenol/toxicidad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Autofagia/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Estrés Oxidativo/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Masculino , Ratas , Ratones , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Fibrosis , Células Cultivadas , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control , Cardiomegalia/patología
15.
Opt Lett ; 49(11): 3078-3081, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824332

RESUMEN

Diode lasers with high beam quality and high power have many promising applications. However, high beam quality is always in conflict with high power. In this Letter, we theoretically and experimentally confirm the mode instability property of supersymmetric structures at higher operating currents. Meanwhile, we propose a loss-tailoring diode laser based on a supersymmetric structure, which enables the higher-order lateral modes to obtain higher losses, raises the excitation threshold of the higher-order lateral modes, and achieves a stable fundamental-lateral-mode output at higher current operation. The device obtained a quasi-single-lobe lateral far-field distribution with the full width at half maximum (FWHM) of 7.58° at 350 mA under room temperature, which is a 65% reduction compared to the traditional Fabry-Perot (FP) diode lasers. Moreover, the M2 of 2.181@350 mA has an improvement of about 37% over traditional FP and supersymmetric structure lasers.

16.
Stem Cells ; 41(1): 77-92, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36208284

RESUMEN

Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.


Asunto(s)
Proteínas de la Membrana , Células-Madre Neurales , Humanos , Proteínas de la Membrana/genética , Hipoxia de la Célula , Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia , Células-Madre Neurales/metabolismo , Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
17.
Phys Rev Lett ; 133(10): 101901, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39303232

RESUMEN

Hadronic resonances emerge from strong interactions encoding the dynamics of quarks and gluons. The structure of these resonances can be probed by virtual photons parametrized in transition form factors. In this study, twelve N^{*} and Δ transition form factors at the pole are extracted from data with the center-of-mass energy from πN threshold to 1.8 GeV, and the photon virtuality 0≤Q^{2}/GeV^{2}≤8. For the first time, these results are determined from a simultaneous analysis of more than one state, i.e., ∼10^{5} πN, ηN, and KΛ electroproduction data. In addition, about 5×10^{4} data in the hadronic sector as well as photoproduction serve as boundary conditions. For the Δ(1232) and N(1440) states our results are in qualitative agreement with previous studies, while the transition form factors at the poles of some higher excited states are estimated for the first time. Realistic uncertainties are determined by further exploring the parameter space.

18.
BMC Cancer ; 24(1): 187, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331776

RESUMEN

BACKGROUND: Endostar, an anti-angiogenic drug, has been approved for treating non-small cell lung cancer (NSCLC). At present, endostar combined with radiotherapy or chemotherapy has achieved ideal results in the treatment of some tumors, but there is a lack of application and study in NSCLC. This study investigated the therapeutic effect and potential mechanism of endostar combined with cisplatin (EC) in NSCLC. METHODS: HE staining, TUNEL staining, immunofluorescence, colony formation ability, and cell migration ability were used to evaluate the anti-tumor activity of EC. The expressions of FMOD, VEGF, FGF-2, and PDGF-B were detected by western blotting and qPCR. The target of combination therapy was analyzed by m6A sequencing and RNA sequencing. METTL3 knockdown and overexpressed A549 cells were constructed and co-cultured with HUVECs to further evaluate the effect of METLL3 on combination therapy. RESULTS: Combination therapy significantly reduced the colony formation and migration ability of NSCLC cells, induced cell apoptosis, and inhibited the tube formation ability of HUVECs. The results of m6A sequencing and RNA sequencing showed that the EC could down-regulate the expression level of FMOD in tumor tissues, which might be related to the reduction of its m6A methylation modification regulatory enzyme METTL3. Restricting FMOD expression could reduce the expression of FGF2, TGF-ß1, VEGF and PDGF-B. Moreover, overexpression of METTLE almost abolished the anti-tumor effect of EC and promoted angiogenesis. CONCLUSIONS: Endostar combined with cisplatin might exert anti-tumor effects by down-regulating the expression of METTL3 and FMOD.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Endostatinas , Neoplasias Pulmonares , Proteínas Recombinantes , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Multiómica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Metiltransferasas/genética
19.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965548

RESUMEN

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/genética , Animales , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Terapia Molecular Dirigida
20.
Langmuir ; 40(39): 20464-20473, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39298634

RESUMEN

Atomic force microscopy (AFM), in particular force spectroscopy, is a powerful tool for understanding the supramolecular structures associated with polymers grafted to surfaces, especially in regimes of low polymer density where different morphological structures are expected. In this study, we utilize force volume mapping to characterize the nanoscale surfaces of Ag nanocubes (AgNCs) grafted with a monolayer of polyethylene glycol (PEG) chains. Spatially resolved force-distance curves taken for a single AgNC were used to map surface properties, such as adhesion energy and deformation. We confirm the presence of surface octopus micelles that are localized on the corners of the AgNC, using force curves to resolve structural differences between the micelle "bodies" and "legs". Furthermore, we observe unique features of this system including a polymer corona stemming from AgNC-substrate interactions and polymer bridging stemming from particle-particle interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA